cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305106 Number of unitary factorizations of Heinz numbers of integer partitions of n. Number of multiset partitions of integer partitions of n with pairwise disjoint blocks.

This page as a plain text file.
%I A305106 #11 Dec 14 2020 07:49:58
%S A305106 1,1,2,4,7,12,21,34,55,87,138,211,324,486,727,1079,1584,2305,3337,
%T A305106 4789,6830,9712,13689,19225,26841,37322,51598,71108,97580,133350,
%U A305106 181558,246335,332991,448706,602607,806732,1077333,1433885,1903682,2520246,3328549,4383929
%N A305106 Number of unitary factorizations of Heinz numbers of integer partitions of n. Number of multiset partitions of integer partitions of n with pairwise disjoint blocks.
%H A305106 Alois P. Heinz, <a href="/A305106/b305106.txt">Table of n, a(n) for n = 0..1000</a>
%e A305106 The a(6) = 21 unitary factorizations:
%e A305106 (13) (21) (22) (25) (27) (28) (30) (36) (40) (48) (64)
%e A305106 (2*11) (2*15) (3*7) (3*10) (3*16) (4*7) (4*9) (5*6) (5*8)
%e A305106 (2*3*5)
%e A305106 The a(6) = 21 multiset partitions:
%e A305106 {{6}}
%e A305106 {{2,4}}
%e A305106 {{1,5}}
%e A305106 {{3,3}}
%e A305106 {{2,2,2}}
%e A305106 {{1,1,4}}
%e A305106 {{1,2,3}}
%e A305106 {{1,1,2,2}}
%e A305106 {{1,1,1,3}}
%e A305106 {{1,1,1,1,2}}
%e A305106 {{1,1,1,1,1,1}}
%e A305106 {{1},{5}}
%e A305106 {{1},{2,3}}
%e A305106 {{2},{4}}
%e A305106 {{2},{1,3}}
%e A305106 {{2},{1,1,1,1}}
%e A305106 {{1,1},{4}}
%e A305106 {{1,1},{2,2}}
%e A305106 {{3},{1,2}}
%e A305106 {{3},{1,1,1}}
%e A305106 {{1},{2},{3}}
%t A305106 Table[Sum[BellB[Length[Union[y]]],{y,IntegerPartitions[n]}],{n,30}]
%t A305106 (* Second program: *)
%t A305106 b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[With[{t = n - i j}, b[t, Min[t, i - 1], k]], {j, 1, n/i}] k + b[n, i - 1, k]]];
%t A305106 T[n_, k_] := Sum[b[n, n, k - i] (-1)^i Binomial[k, i], {i, 0, k}]/k!;
%t A305106 a[n_] := Sum[T[n, k], {k, 0, Floor[(Sqrt[1 + 8n] - 1)/2]}];
%t A305106 a /@ Range[0, 50] (* _Jean-François Alcover_, Dec 14 2020, after _Alois P. Heinz_ in A321878 *)
%Y A305106 Cf. A000110, A001055, A001221, A001970, A034444, A089233, A258466, A259936, A281116, A285572, A305078, A305079.
%Y A305106 Row sums of A321878.
%K A305106 nonn
%O A305106 0,3
%A A305106 _Gus Wiseman_, May 25 2018