cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305124 G.f.: Sum_{k>=1} x^(2*k-1)/(1+x^(2*k-1)) * Product_{k>=1} (1+x^k)/(1-x^k).

Original entry on oeis.org

0, 1, 1, 4, 7, 14, 24, 42, 69, 113, 178, 276, 420, 630, 930, 1360, 1963, 2804, 3969, 5568, 7746, 10700, 14672, 19986, 27060, 36423, 48754, 64928, 86038, 113478, 149012, 194842, 253737, 329172, 425452, 547952, 703343, 899858, 1147680, 1459364, 1850310, 2339432
Offset: 0

Views

Author

Vaclav Kotesovec, May 26 2018

Keywords

Comments

Convolution of A305123 and A000009.

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Sum[x^(2*k-1)/(1+x^(2*k-1)), {k, 1, nmax}] * Product[(1+x^k)/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) = A305101(n) - A305122(n).
a(n) ~ exp(sqrt(n)*Pi) * log(2) / (8*Pi*sqrt(n)).