This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A305150 #18 Dec 06 2018 16:33:37 %S A305150 1,1,1,1,1,2,1,1,1,2,1,2,1,2,2,1,1,2,1,2,2,2,1,3,1,2,1,2,1,5,1,1,2,2, %T A305150 2,2,1,2,2,3,1,5,1,2,2,2,1,3,1,2,2,2,1,3,2,3,2,2,1,6,1,2,2,1,2,5,1,2, %U A305150 2,5,1,3,1,2,2,2,2,5,1,3,1,2,1,6,2,2,2,3,1,6,2,2,2,2,2,4,1,2,2,2,1,5,1,3,5 %N A305150 Number of factorizations of n into distinct, pairwise indivisible factors greater than 1. %H A305150 Antti Karttunen, <a href="/A305150/b305150.txt">Table of n, a(n) for n = 1..16384</a> %H A305150 Antti Karttunen, <a href="/A305150/a305150.txt">Data supplement: n, a(n) computed for n = 1..100000</a> %F A305150 a(n) <= A045778(n) <= A001055(n). - _Antti Karttunen_, Dec 06 2018 %e A305150 The a(60) = 6 factorizations are (3 * 4 * 5), (3 * 20), (4 * 15), (5 * 12), (6 * 10), (60). Missing from this list are (2 * 3 * 10), (2 * 5 * 6), (2 * 30). %t A305150 facs[n_] := If[n <= 1, {{}}, Join@@Table[Map[Prepend[#, d] &, Select[facs[n/d], Min@@ # >= d &]], {d, Rest[Divisors[n]]}]]; Table[Length[Select[facs[n], UnsameQ@@ # && Select[Tuples[Union[#], 2], UnsameQ@@ # && Divisible@@ # &] == {} &]], {n, 100}] %o A305150 (PARI) A305150(n, m=n, facs=List([])) = if(1==n, 1, my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m)&&factorback(apply(x -> (x%d),Vec(facs))), newfacs = List(facs); listput(newfacs,d); s += A305150(n/d, d-1, newfacs))); (s)); \\ _Antti Karttunen_, Dec 06 2018 %Y A305150 Cf. A001055, A001970, A007716, A045778, A162247, A259936, A275024, A285572, A281113, A281116, A303386, A303431, A305001, A305148, A305149, A305253. %K A305150 nonn %O A305150 1,6 %A A305150 _Gus Wiseman_, May 26 2018 %E A305150 More terms from _Antti Karttunen_, Dec 06 2018