This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A305168 #30 Nov 27 2020 02:08:08 %S A305168 1,3,9,23,54,118,246,489,940,1751,3177,5630,9776,16659,27922,46092, %T A305168 75039,120615,191611,301086,468342,721638,1102113,1669226,2508429, %U A305168 3741741,5542532,8155720,11925654,17334077,25051940,36009468,51491111,73263043,103744575 %N A305168 Number of non-isomorphic graphs on 4n vertices whose edges are the union of two n-edge matchings. %C A305168 a(n) is also the number of partitions of 2n with two kinds of parts where all parts of the second kind are even. E.g., the a(2) = 9 such partitions are (2', 2'), (4'), (2,2'), (4), (1,1,2'), (3,1), (2,2), (2,1,1), (1,1,1,1). A bijection is to take each component in the graph whose edges are the union of two n-edge matchings, map each path of length p to a part p and each cycle (which must be even) of length p to a part p'. %F A305168 a(n) = [x^2n] (Product_{i>=1} 1/(1-x^i))*(Product_{j>=1} 1/(1-x^(2j))). %F A305168 a(n) = Sum_{i=0..n} b(2i)*b(n-i) where b(n) is the number of partitions of n (A000041). %F A305168 a(n) = A002513(2n). - _Alois P. Heinz_, Aug 18 2018 %e A305168 To see a(2)=9, observe that all graphs that are the union of two matchings of size n=2 are isomorphic to the union of S = {{1,2},{3,4}} and one of T= %e A305168 1. {{1,2}, {3,4}} --> (2',2') %e A305168 2. {{1,3}, {2,4}} --> (4') %e A305168 3. {{1,5}, {3,4}} --> (2,2') %e A305168 4. {{1,3}, {4,5}} --> (4) %e A305168 5. {{1,2}, {5,6}} --> (1,1,2') %e A305168 6. {{1,3}, {5,6}} --> (3,1) %e A305168 7. {{1,5}, {3,6}} --> (2,2) %e A305168 8. {{1,5}, {6,7}} --> (2,1,1) %e A305168 9. {{5,6}, {7,8}} --> (1,1,1,1) %e A305168 Note that the partitions correspond to the bijection mentioned in the comments above. %p A305168 b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(d* %p A305168 (2-irem(d, 2)), d=numtheory[divisors](j)), j=1..n)/n) %p A305168 end: %p A305168 a:= n-> b(2*n): %p A305168 seq(a(n), n=0..40); # _Alois P. Heinz_, Aug 18 2018 %t A305168 a[n_] := Sum[PartitionsP[2k] PartitionsP[n-k], {k, 0, n}]; %t A305168 a /@ Range[0, 40] (* _Jean-François Alcover_, Nov 27 2020 *) %o A305168 (PARI) a(n) = sum(i=0, n, numbpart(2*i)*numbpart(n-i)); \\ _Michel Marcus_, Aug 18 2018 %Y A305168 Bisection (even part) of A002513. %Y A305168 Cf. A000041. %K A305168 nonn %O A305168 0,2 %A A305168 _Yu Hin Au_, Aug 17 2018