cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305187 Decimal expansion of the solution to x^x^x = 3.

This page as a plain text file.
%I A305187 #72 Aug 04 2018 06:42:25
%S A305187 1,6,3,5,0,7,8,4,7,4,6,3,6,3,7,5,2,4,5,8,9,9,7,5,7,1,9,8,7,8,7,5,0,0,
%T A305187 8,8,8,1,2,3,9,8,2,1,9,2,7,6,8,1,4,6,1,9,3,5,1,7,4,4,4,5,6,2,8,9,6,7,
%U A305187 6,2,4,6,2,3,1,6,3,0,3,6,7,6,2,0,9,1,9,5,5,7,2,0,7,9,0,4,6,9,7,3,4,1,0,7
%N A305187 Decimal expansion of the solution to x^x^x = 3.
%C A305187 Let x(m) be the solution to the equation x^x^x^...^x = m, where x appears m times on the left hand side; e.g.,
%C A305187                                                 decimal
%C A305187     m         equation        solution x(m)    expansion
%C A305187   ====  ====================  =============  =============
%C A305187      1              x = 1     1.00000000...     A000007
%C A305187      2            x^x = 2     1.55961046...     A030798
%C A305187      3          x^x^x = 3     1.63507847...  this sequence
%C A305187      4        x^x^x^x = 4     1.62036995...
%C A305187      5      x^x^x^x^x = 5     1.59340881...
%C A305187      6    x^x^x^x^x^x = 6     1.56864406...
%C A305187      7  x^x^x^x^x^x^x = 7     1.54828598...
%C A305187 .
%C A305187     10  x^x^x^x^...^x = 10    1.50849792...
%C A305187 .
%C A305187    100  x^x^x^x^...^x = 100   1.44567285...
%C A305187 .
%C A305187   1000  x^x^x^x^...^x = 1000  1.44467831...
%C A305187 .
%C A305187 Then x(1) < x(m) < x(3) for all m >= 4.
%C A305187 Let y(k/2) be the solution to the equation y^y^y^...^y = (k/2)*y^y, where y appears k times on the left hand side; e.g.,
%C A305187                                                 decimal
%C A305187 k          equation           solution y(k/2)  expansion
%C A305187 =  =========================  ===============  =========
%C A305187 1              y = (1/2)*y^y  2                 A000038
%C A305187 2            y^y = (2/2)*y^y  indeterminate
%C A305187 3          y^y^y = (3/2)*y^y  1.6998419085...
%C A305187 4        y^y^y^y = (4/2)*y^y  1.6396207046...
%C A305187 5      y^y^y^y^y = (5/2)*y^y  1.5987769216...
%C A305187 6    y^y^y^y^y^y = (6/2)*y^y  1.5694666408...
%C A305187 7  y^y^y^y^y^y^y = (7/2)*y^y  1.5476452822...
%C A305187 .
%C A305187 What is lim_{k -> infinity} y(k/2)?
%C A305187 Lim_{m -> infinity} x(m) = e^(1/e). - _Jon E. Schoenfield_, Jul 23 2018
%C A305187 Lim_{k -> infinity} y(k/2) = e^(1/e). - _Jon E. Schoenfield_, Aug 01 2018
%e A305187 1.635078474636375245899757198787500888...
%t A305187 RealDigits[ FindRoot[ x^x^x == 3, {x, 1}, WorkingPrecision -> 128][[1, 2]]][[1]] (* _Robert G. Wilson v_, Jun 13 2018 *)
%o A305187 (PARI) default(realprecision,333);
%o A305187 solve(x=1.6, 1.7, x^x^x-3) \\ _Joerg Arndt_, May 27 2018
%Y A305187 Cf. A000007, A000038, A030798.
%K A305187 nonn,cons
%O A305187 1,2
%A A305187 _Juri-Stepan Gerasimov_, May 27 2018
%E A305187 More digits from _Michel Marcus_, _Joerg Arndt_, May 27 2018