This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A305187 #72 Aug 04 2018 06:42:25 %S A305187 1,6,3,5,0,7,8,4,7,4,6,3,6,3,7,5,2,4,5,8,9,9,7,5,7,1,9,8,7,8,7,5,0,0, %T A305187 8,8,8,1,2,3,9,8,2,1,9,2,7,6,8,1,4,6,1,9,3,5,1,7,4,4,4,5,6,2,8,9,6,7, %U A305187 6,2,4,6,2,3,1,6,3,0,3,6,7,6,2,0,9,1,9,5,5,7,2,0,7,9,0,4,6,9,7,3,4,1,0,7 %N A305187 Decimal expansion of the solution to x^x^x = 3. %C A305187 Let x(m) be the solution to the equation x^x^x^...^x = m, where x appears m times on the left hand side; e.g., %C A305187 decimal %C A305187 m equation solution x(m) expansion %C A305187 ==== ==================== ============= ============= %C A305187 1 x = 1 1.00000000... A000007 %C A305187 2 x^x = 2 1.55961046... A030798 %C A305187 3 x^x^x = 3 1.63507847... this sequence %C A305187 4 x^x^x^x = 4 1.62036995... %C A305187 5 x^x^x^x^x = 5 1.59340881... %C A305187 6 x^x^x^x^x^x = 6 1.56864406... %C A305187 7 x^x^x^x^x^x^x = 7 1.54828598... %C A305187 . %C A305187 10 x^x^x^x^...^x = 10 1.50849792... %C A305187 . %C A305187 100 x^x^x^x^...^x = 100 1.44567285... %C A305187 . %C A305187 1000 x^x^x^x^...^x = 1000 1.44467831... %C A305187 . %C A305187 Then x(1) < x(m) < x(3) for all m >= 4. %C A305187 Let y(k/2) be the solution to the equation y^y^y^...^y = (k/2)*y^y, where y appears k times on the left hand side; e.g., %C A305187 decimal %C A305187 k equation solution y(k/2) expansion %C A305187 = ========================= =============== ========= %C A305187 1 y = (1/2)*y^y 2 A000038 %C A305187 2 y^y = (2/2)*y^y indeterminate %C A305187 3 y^y^y = (3/2)*y^y 1.6998419085... %C A305187 4 y^y^y^y = (4/2)*y^y 1.6396207046... %C A305187 5 y^y^y^y^y = (5/2)*y^y 1.5987769216... %C A305187 6 y^y^y^y^y^y = (6/2)*y^y 1.5694666408... %C A305187 7 y^y^y^y^y^y^y = (7/2)*y^y 1.5476452822... %C A305187 . %C A305187 What is lim_{k -> infinity} y(k/2)? %C A305187 Lim_{m -> infinity} x(m) = e^(1/e). - _Jon E. Schoenfield_, Jul 23 2018 %C A305187 Lim_{k -> infinity} y(k/2) = e^(1/e). - _Jon E. Schoenfield_, Aug 01 2018 %e A305187 1.635078474636375245899757198787500888... %t A305187 RealDigits[ FindRoot[ x^x^x == 3, {x, 1}, WorkingPrecision -> 128][[1, 2]]][[1]] (* _Robert G. Wilson v_, Jun 13 2018 *) %o A305187 (PARI) default(realprecision,333); %o A305187 solve(x=1.6, 1.7, x^x^x-3) \\ _Joerg Arndt_, May 27 2018 %Y A305187 Cf. A000007, A000038, A030798. %K A305187 nonn,cons %O A305187 1,2 %A A305187 _Juri-Stepan Gerasimov_, May 27 2018 %E A305187 More digits from _Michel Marcus_, _Joerg Arndt_, May 27 2018