This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A305194 #9 Feb 03 2025 09:48:18 %S A305194 1,1,1,1,2,1,3,2,3,4,5,4,6,7,7,9,11,12,13,15,17,20,23,25,27,32,35,40, %T A305194 45,49,54,58,67,78,82,95,99,111,123,135,150,164,177,194,214,236,260, %U A305194 282,309,330 %N A305194 Number of z-forests summing to n. Number of strict integer partitions of n with pairwise indivisible parts and all connected components having clutter density -1. %C A305194 Given a finite set S of positive integers greater than 1, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices that have a common divisor greater than 1. For example, G({6,14,15,35}) is a 4-cycle. A set S is said to be connected if G(S) is a connected graph. The clutter density of S is defined to be Sum_{s in S} (omega(s) - 1) - omega(lcm(S)), where omega = A001221 and lcm is least common multiple. Then a z-forest is a strict integer partition with pairwise indivisible parts greater than 1 such that all connected components have clutter density -1. %H A305194 Roland Bacher, <a href="https://arxiv.org/abs/1102.2708">On the enumeration of labelled hypertrees and of labelled bipartite trees</a>, arXiv:1102.2708 [math.CO], 2011. %e A305194 The a(17) = 11 z-forests together with the corresponding multiset systems: %e A305194 (17): {{7}} %e A305194 (15,2): {{2,3},{1}} %e A305194 (14,3): {{1,4},{2}} %e A305194 (13,4): {{6},{1,1}} %e A305194 (12,5): {{1,1,2},{3}} %e A305194 (11,6): {{5},{1,2}} %e A305194 (10,7): {{1,3},{4}} %e A305194 (9,8): {{2,2},{1,1,1}} %e A305194 (10,4,3): {{1,3},{1,1},{2}} %e A305194 (7,6,4): {{4},{1,2},{1,1}} %e A305194 (7,5,3,2): {{4},{3},{2},{1}} %t A305194 zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]]; %t A305194 zensity[s_]:=Total[(PrimeNu[#]-1&)/@s]-PrimeNu[LCM@@s]; %t A305194 zreeQ[s_]:=And[Length[s]>=2,zensity[s]==-1]; %t A305194 Table[Length[Select[IntegerPartitions[n],Function[s,UnsameQ@@s&&And@@(Length[#]==1||zreeQ[#]&)/@Table[Select[s,Divisible[m,#]&],{m,zsm[s]}]&&Select[Tuples[s,2],UnsameQ@@#&&Divisible@@#&]=={}]]],{n,50}] %Y A305194 Cf. A030019, A048143, A134954, A275307, A285572, A293510, A293993, A293994, A303362, A303837, A303838, A304118, A304382, A305078, A305195. %K A305194 nonn,more %O A305194 1,5 %A A305194 _Gus Wiseman_, May 27 2018