This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A305196 #17 May 06 2022 13:13:51 %S A305196 1,1,10,9,26,25,74,29,82,441,170,133,348,131,166,3025,344,559,1602, %T A305196 557,820,9979,986,4333,1236,9191,694,3249,1652,3481,9378,34969,3118, %U A305196 249967,5636,36829,3324,51947,3994,6561,5000,15835,16806,3557,6436,119025,6254,589777,7512,1768851 %N A305196 a(n) is the smallest number k such that tau(k + n) = tau(k) + n where tau(n) is the number of divisors of n (A000005). %H A305196 Michel Marcus and Giovanni Resta, <a href="/A305196/b305196.txt">Table of n, a(n) for n = 0..244</a> (terms up to a(106) from Michel Marcus) %e A305196 10 and 12 have respectively 4 and 6 divisors, that is, 12-10 = 6-4, so a(2)=10. %e A305196 9 and 12 have respectively 3 and 6 divisors, that is, 12-9 = 6-3, so a(3)=9. %p A305196 f:= proc(n) local k; %p A305196 for k from 1 do %p A305196 if numtheory:-tau(k+n)=numtheory:-tau(k)+n then return k fi %p A305196 od %p A305196 end proc: %p A305196 map(f, [$0..50]); # _Robert Israel_, May 28 2018 %t A305196 Array[Block[{k = 1}, While[DivisorSigma[0, k + #] != DivisorSigma[0, k] + #, k++]; k] &, 40, 0] (* _Michael De Vlieger_, May 27 2018 *) %o A305196 (PARI) a(n) = {my(k=1); while(numdiv(k+n) != numdiv(k) + n, k++); k;} %Y A305196 Cf. A000005, A099642, A015886 (similar, with sigma). %K A305196 nonn %O A305196 0,3 %A A305196 _Michel Marcus_, May 27 2018