This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A305198 #9 Dec 08 2020 08:04:11 %S A305198 1,1,7,56,470,10299,91925,3939653,36298007,2571177913,24158837489, %T A305198 2557117944391,24350208829581,3601150175699409,34626777577615921, %U A305198 6820331445080882282,66066554102006208712,16719951521837764142510,162903256982698962545956 %N A305198 Number of set partitions of [2n+1] with symmetric block size list of length A109613(n). %H A305198 Alois P. Heinz, <a href="/A305198/b305198.txt">Table of n, a(n) for n = 0..200</a> %F A305198 a(n) = A275281(2n+1,A109613(n)). %p A305198 b:= proc(n, s) option remember; expand(`if`(n>s, %p A305198 binomial(n-1, n-s-1)*x, 1)+add(binomial(n-1, j-1)* %p A305198 b(n-j, s+j)*binomial(s+j-1, j-1), j=1..(n-s)/2)*x^2) %p A305198 end: %p A305198 a:= n-> coeff(b(2*n+1, 0), x, n+irem(n+1, 2)): %p A305198 seq(a(n), n=0..20); %t A305198 b[n_, s_] := b[n, s] = Expand[If[n > s, Binomial[n - 1, n - s - 1] x, 1] + Sum[Binomial[n - 1, j - 1] b[n - j, s + j] Binomial[s + j - 1, j - 1], {j, 1, (n - s)/2}] x^2]; %t A305198 a[n_] := Coefficient[b[2n + 1, 0], x, n + Mod[n + 1, 2]]; %t A305198 a /@ Range[0, 20] (* _Jean-François Alcover_, Dec 08 2020, after _Alois P. Heinz_ *) %Y A305198 Bisection (odd part) of A305197. %Y A305198 Cf. A109613, A275281, A275283. %K A305198 nonn %O A305198 0,3 %A A305198 _Alois P. Heinz_, May 27 2018