cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305231 Numbers that are the product of some integer and its digit reversal.

This page as a plain text file.
%I A305231 #20 Jan 28 2023 12:01:45
%S A305231 0,1,4,9,10,16,25,36,40,49,64,81,90,100,121,160,250,252,360,400,403,
%T A305231 484,490,574,640,736,765,810,900,976,1000,1008,1089,1207,1210,1300,
%U A305231 1458,1462,1600,1612,1729,1855,1936,1944,2268,2296,2430,2500,2520,2668,2701
%N A305231 Numbers that are the product of some integer and its digit reversal.
%C A305231 Terms of A061205, sorted in increasing order, with duplicates removed.
%H A305231 Jon E. Schoenfield, <a href="/A305231/b305231.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms from Alois P. Heinz)
%e A305231 12*21 = 252, so 252 is a term.
%e A305231 156*651 = 101556, so 101556 is a term. (It can also be written as 273*372; see A203924.)
%p A305231 a:= proc(n) option remember; local k, d; for k from 1+a(n-1) do
%p A305231       for d in numtheory[divisors](k) do if k = d*(s-> parse(cat(
%p A305231       seq(s[-i], i=1..length(s)))))(""||d) then return k fi od od
%p A305231     end: a(1):=0:
%p A305231 seq(a(n), n=1..60);  # _Alois P. Heinz_, May 27 2018
%t A305231 a={0}; h=-1; For[k=0, k<=2701, k++, For[m=1, m<=DivisorSigma[0, k], m++, d=Divisors[k]; If[k/Part[d, m] == FromDigits[Reverse[IntegerDigits[Part[d, m]]]] && k>h , AppendTo[a, k]; h=k]]]; a (* _Stefano Spezia_, Jan 28 2023 *)
%o A305231 (PARI) isok(n) = if (n==0, return (1), fordiv(n, d, if (n/d == fromdigits(Vecrev(digits(d))), return (1))); return (0)); \\ _Michel Marcus_, May 28 2018
%Y A305231 Cf. A061205, A203924.
%Y A305231 Cf. A325148 (squares), A359981 (nonsquares).
%K A305231 nonn,base
%O A305231 1,3
%A A305231 _Jon E. Schoenfield_, May 27 2018