A305236 Numbers n such that the multiplicative group of integers modulo n is isomorphic to C_m X C_m, m > 1.
8, 12, 63, 126, 513, 1026, 2107, 4214, 12625, 25250, 26533, 39609, 53066, 79218, 355023, 710046, 3190833, 4457713, 6381666, 8915426, 19854847, 38463283, 39709694, 76926566, 242138449, 370634743, 484276898, 516465451, 574336561, 701607583, 741269486, 1032930902, 1148673122, 1380336193, 1403215166, 2324581983, 2760672386, 4649163966, 4882890625, 6174434113, 9765781250
Offset: 1
Keywords
Examples
The multiplicative group of integers modulo 63 is isomorphic to C_6 X C_6. There are A007434(1) = 1 element of order 1, A007434(2) = 3 elements of order 2, A007434(3) = 8 elements of order 3, A007434(6) = 24 elements of order 6 modulo 63. The multiplicative group of integers modulo 513 is isomorphic to C_18 X C_18. There are A007434(1) = 1 element of order 1, A007434(2) = 3 elements of order 2, A007434(3) = 8 elements of order 3, A007434(6) = 24 elements of order 6, A007434(9) = 72 elements of order 9, A007434(18) = 216 elements of order 18 modulo 513.
Links
- Jianing Song, Table of n, a(n) for n = 1..287 (all terms below 10^16)
- Wikipedia, Multiplicative group of integers modulo n.
Programs
-
PARI
for(n=1,10^7,if(#znstar(n)[2]==2 && znstar(n)[2][1]==znstar(n)[2][2], print1(n, ", "))) \\ Jianing Song, Sep 15 2018
-
PARI
the_first_entries(nn) = my(u=[]); for(n=2, sqrt(nn), my(v=factor(n), d=#v[, 1], p=v[d, 1], e=v[d, 2]); if(isprime(n+1) && p!=2 && n==(p-1)*p^e, u=concat(u, [(n+1)*p^(e+1)]))); t=concat([8, 12], concat(u, 2*u)); t=vecsort(select(i->(i
Jianing Song, Apr 13 2019
Extensions
Missing a(40) inserted by Jianing Song, Apr 20 2019
Comments