This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A305260 #11 Jun 18 2018 09:30:01 %S A305260 0,1,2,4,2,10,8,15,18,3,30,14,37,29,44,4,64,21,73,60,44,86,5,73,99, %T A305260 125,31,136,61,147,124,98,163,6,204,41,217,80,230,161,204,129,255,7, %U A305260 308,52,235,330,198,298,107,359,163,374,276,335,8,456,66,243,424,489,132,506,390,203,531 %N A305260 A linear mapping a(n) = x + y*n of pairs of nonnegative integers (x,y), where the pairs are enumerated first by radial coordinate r and in case of ties, by polar angle 0 <= phi <= Pi/2 in a polar coordinate system. %C A305260 Secondary sorting by polar angle is equivalent to secondary sorting by y. %C A305260 The sequence is an alternative solution to the riddle described in the comments of A304584. %e A305260 y: %e A305260 | %e A305260 8 | 57 61 63 66 70 %e A305260 | %e A305260 7 | 44 47 51 53 60 68 %e A305260 | %e A305260 6 | 34 36 38 42 49 55 64 %e A305260 | %e A305260 5 | 25 27 29 32 40 46 54 67 %e A305260 | %e A305260 4 | 16 18 21 24 30 39 48 59 69 %e A305260 | %e A305260 3 | 10 12 14 19 23 31 41 52 65 %e A305260 | %e A305260 2 | 5 7 8 13 20 28 37 50 62 %e A305260 | %e A305260 1 | 2 3 6 11 17 26 35 45 58 %e A305260 | %e A305260 0 | 0 1 4 9 15 22 33 43 56 71 %e A305260 _______________________________________ %e A305260 x: 0 1 2 3 4 5 6 7 8 9 %e A305260 . %e A305260 a(5) = x(5) + 5*y(5) = 0 + 5*2 = 10, %e A305260 a(14) = x(14) + 14*y(14) = 2 + 14*3 = 44, %e A305260 a(20) = x(20) + 20*y(20) = 4 + 20*2 = 44. %o A305260 (PARI) n=-1;for(r2=0,81,for(y=0,round(sqrt(r2)),x2=r2-y^2;if(issquare(x2),print1(round(sqrt(x2))+y*(n++),", ")))) %Y A305260 Cf. A000925, A283305, A283306, A304584, A304585. %K A305260 nonn %O A305260 0,3 %A A305260 _Hugo Pfoertner_, Jun 15 2018