A305271 a(n) = 680*2^n - 548.
132, 812, 2172, 4892, 10332, 21212, 42972, 86492, 173532, 347612, 695772, 1392092, 2784732, 5570012, 11140572, 22281692, 44563932, 89128412, 178257372, 356515292, 713031132, 1426062812, 2852126172, 5704252892, 11408506332, 22817013212, 45634026972, 91268054492, 182536109532, 365072219612
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- N. E. Arif, Roslan Hasni and Saeid Alikhani, Fourth order and fourth sum connectivity indices of polyphenylene dendrimers, J. Applied Science, 12 (21), 2012, 2279-2282.
- E. Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.
- Index entries for linear recurrences with constant coefficients, signature (3,-2).
Programs
-
Maple
seq(680*2^n-548, n = 0..40);
-
PARI
Vec(4*(33 + 104*x) / ((1 - x)*(1 - 2*x)) + O(x^40)) \\ Colin Barker, May 31 2018
Formula
From Colin Barker, May 31 2018: (Start)
G.f.: 4*(33 + 104*x) / ((1 - x)*(1 - 2*x)).
a(n) = 3*a(n-1) - 2*a(n-2) for n>1.
(End)
Comments