A305269 a(n) = 120*2^n - 95.
25, 145, 385, 865, 1825, 3745, 7585, 15265, 30625, 61345, 122785, 245665, 491425, 982945, 1965985, 3932065, 7864225, 15728545, 31457185, 62914465, 125829025, 251658145, 503316385, 1006632865, 2013265825, 4026531745, 8053063585, 16106127265, 32212254625, 64424509345, 128849018785
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- N. E. Arif, Roslan Hasni and Saeid Alikhani, Fourth order and fourth sum connectivity indices of polyphenylene dendrimers, J. Applied Science, 12 (21), 2012, 2279-2282.
- Index entries for linear recurrences with constant coefficients, signature (3,-2).
Programs
-
Maple
seq(120*2^n-95, n = 0..40);
-
PARI
Vec(5*(5 + 14*x) / ((1 - x)*(1 - 2*x)) + O(x^40)) \\ Colin Barker, May 31 2018
Formula
From Colin Barker, May 31 2018: (Start)
G.f.: 5*(5 + 14*x) / ((1 - x)*(1 - 2*x)).
a(n) = 3*a(n-1) - 2*a(n-2) for n>1.
(End)
Comments