cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A305269 a(n) = 120*2^n - 95.

Original entry on oeis.org

25, 145, 385, 865, 1825, 3745, 7585, 15265, 30625, 61345, 122785, 245665, 491425, 982945, 1965985, 3932065, 7864225, 15728545, 31457185, 62914465, 125829025, 251658145, 503316385, 1006632865, 2013265825, 4026531745, 8053063585, 16106127265, 32212254625, 64424509345, 128849018785
Offset: 0

Views

Author

Emeric Deutsch, May 30 2018

Keywords

Comments

a(n) is the number of vertices in the polyphenylene dendrimer G[n], defined pictorially in the Arif et al. reference (see Fig. 1, where G[2] is shown).

Crossrefs

Programs

  • Maple
    seq(120*2^n-95, n = 0..40);
  • PARI
    Vec(5*(5 + 14*x) / ((1 - x)*(1 - 2*x)) + O(x^40)) \\ Colin Barker, May 31 2018

Formula

From Colin Barker, May 31 2018: (Start)
G.f.: 5*(5 + 14*x) / ((1 - x)*(1 - 2*x)).
a(n) = 3*a(n-1) - 2*a(n-2) for n>1.
(End)

A305270 a(n) = 140*2^n - 112.

Original entry on oeis.org

28, 168, 448, 1008, 2128, 4368, 8848, 17808, 35728, 71568, 143248, 286608, 573328, 1146768, 2293648, 4587408, 9174928, 18349968, 36700048, 73400208, 146800528, 293601168, 587202448, 1174405008, 2348810128, 4697620368, 9395240848, 18790481808, 37580963728, 75161927568, 150323855248
Offset: 0

Views

Author

Emeric Deutsch, May 30 2018

Keywords

Comments

a(n) is the number of edges in the polyphenylene dendrimer G[n], defined pictorially in the Arif et al. reference (see Fig. 1, where G[2] is shown).

Crossrefs

Programs

  • Maple
    seq(140*2^n-112, n = 0..40);
  • PARI
    Vec(28*(1 + 3*x) / ((1 - x)*(1 - 2*x)) + O(x^40)) \\ Colin Barker, May 31 2018

Formula

From Colin Barker, May 31 2018: (Start)
G.f.: 28*(1 + 3*x) / ((1 - x)*(1 - 2*x)).
a(n) = 3*a(n-1) - 2*a(n-2) for n>1.
(End)

A305271 a(n) = 680*2^n - 548.

Original entry on oeis.org

132, 812, 2172, 4892, 10332, 21212, 42972, 86492, 173532, 347612, 695772, 1392092, 2784732, 5570012, 11140572, 22281692, 44563932, 89128412, 178257372, 356515292, 713031132, 1426062812, 2852126172, 5704252892, 11408506332, 22817013212, 45634026972, 91268054492, 182536109532, 365072219612
Offset: 0

Views

Author

Emeric Deutsch, May 30 2018

Keywords

Comments

a(n) is the first Zagreb index of the polyphenylene dendrimer G[n], defined pictorially in the Arif et al. reference (see Fig. 1, where G[2] is shown).
The first Zagreb index of a simple connected graph is the sum of the squared degrees of its vertices. Alternatively, it is the sum of the degree sums d(i) + d(j) over all edges ij of the graph.
The M-polynomial of the polyphenylene dendrimer G[n] is M(G[n]; x, y) = (56*2^n - 40)*x^2*y^2 + (48*2^n - 40)*x^2*y^3 +(36* 2^n - 36)*x^3*y^3 + 4*x^3 *y^4.

Crossrefs

Programs

  • Maple
    seq(680*2^n-548, n = 0..40);
  • PARI
    Vec(4*(33 + 104*x) / ((1 - x)*(1 - 2*x)) + O(x^40)) \\ Colin Barker, May 31 2018

Formula

From Colin Barker, May 31 2018: (Start)
G.f.: 4*(33 + 104*x) / ((1 - x)*(1 - 2*x)).
a(n) = 3*a(n-1) - 2*a(n-2) for n>1.
(End)
Showing 1-3 of 3 results.