A305309 Array read by rows: a(n, k) = A048996(n, k) * A118851(n, k), n >= 1, k = 1..A000041(n).
1, 2, 1, 3, 4, 1, 4, 6, 4, 6, 1, 5, 8, 12, 9, 12, 8, 1, 6, 10, 16, 9, 12, 36, 8, 12, 24, 10, 1, 7, 12, 20, 24, 15, 48, 27, 36, 16, 72, 32, 15, 40, 12, 1, 8, 14, 24, 30, 16, 18, 60, 72, 48, 54, 20, 96, 54, 144, 16, 20, 120, 80, 18, 60, 14, 1, 9, 16, 28, 36, 40, 21, 72, 90, 48, 60, 144, 27, 24, 120, 144, 192, 216, 96, 25, 160, 90, 360, 80, 24, 180, 160, 21, 84, 16, 1, 10, 18, 32, 42, 48, 25, 24, 84, 108, 120, 72, 180, 96, 108, 28, 144, 180, 96, 240, 576, 108, 128, 216, 30, 200, 240, 480, 540, 480, 32, 30, 240, 135, 720, 240, 28, 252, 280, 24, 112, 18, 1
Offset: 1
Examples
For the rows n = 1..10, and comments on compositions and set partitions with blocks of consecutive numbers, see the link. Example: n = 5, k = 4: the partition is (1^2, 3^1) = [1,1,3] with m = m(n,k) = 3. The A048996(5, 4) = 3 compositions are 1 + 1 + 3, 1 + 3 + 1 and 3 + 1 + 1. The corresponding three consecutive 3-block partitions of [5] := {1, 2, ..., 5} are {1}, {2}, {3,4,5} and {1}, {2,3,4}, {5} and {1,2,3}, {4}, {5}, Therefore, a(5, 4) = 1*1*3 + 1*3*1 + 3*1*1 = 3*3 = 9. For the compositions one has the same sum from the products of the parts.
Links
- Milton Abramowitz and Irene A. Stegun, editors, Multinomials and Partitions, Handbook of Mathematical Functions, December 1972, pp. 831-2.
- Wolfdieter Lang, Rows n = 1..10, and more.
Comments