cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305311 Numbers k(n) used for Markoff forms determining quadratic irrationals with purely periodic continued fractions.

This page as a plain text file.
%I A305311 #14 Jul 31 2018 10:02:58
%S A305311 2,5,12,31,70,81,212,408,463,555,1045,1453,2378,3157,3804,6914,9959,
%T A305311 13860,15605,18045,21622,26073,35491,68260,80782,90903,103247,123042,
%U A305311 148183,178707,233030,321983,470832,467861,703292,1015645,1205641,1224876,1541791,2205232
%N A305311 Numbers k(n) used for Markoff forms determining quadratic irrationals with purely periodic continued fractions.
%C A305311 The indefinite binary quadratic Markoff form MF(n) = f_{m(n}(x, y) = m(n)*x^2 +(3*m(n) - 2*k(n))*x*y + ((k(n)^2 +1)/m(n) - 3*k(n))*y^2 with m(n) = A002559(n), for n >= 1, leads to purely periodic continued fractions for the solution x = xi(n) of f_{m(n)}(x, 1) = 0 with positive square root, namely xi(n) = ((2*k(n) - 3*m(n))  + sqrt(D(n)))/(2*m(n)) with discriminant D(n) = A305312(n). This form f_{m(n)}(x, y) is equivalent to the form fC_{m(n)}(x, y) given by Cassels (p. 31) with the k-sequence given in A305310.
%C A305311 The uniqueness conjecture (see A305310, also for the Aigner reference) is here assumed to be true. - _Wolfdieter Lang_, Jul 29 2018
%D A305311 J. W. S. Cassels, An Introduction to Diophantine Approximation, Cambridge University Press, 1957, Chapter II, The Markoff Chain, pp. 18-44.
%D A305311 Thomas W. Cusick and Mary E. Flahive, The Markoff and Lagrange Spectra, Am. Math. Soc., Providence. Rhode Island, 1989.
%F A305311 a(n) = A305310(n) + 2, n >= 1. The proof is based on Theorem 3, pp. 23-24, of the Cusick-Flahive reference. See also the W. Lang link under A305310. - _Wolfdieter Lang_, Jul 29 2018
%e A305311 The form coefficients [m(n), 3*m(n) - 2*k(n), l(n) - 3*k(n)] with l(n) := (k(n)^2 +1)/m(n), n >= 1, begin: [1, -1, -1], [2, -4, -2], [5, -9, -7], [13, -23, -19], [29, -53, -41], [34, -60, -50], [89, -157, -131], [169, -309, -239], [194, -344, -284], [233, -411, -343], [433, -791, -613], [610, -1076, -898], [985, -1801, -1393], [1325, -2339, -1949], [1597, -2817, -2351], [2897, -5137, -4241], [4181, -7375, -6155], [5741, -10497, -8119], [6466, -11812, -9154], [7561, -13407, -11069], ... .
%e A305311 The corresponding quadratic irrationals xi(n) with purely periodic continued fraction representations begin: (1 + sqrt(5))/2, 1 + sqrt(2), (9+sqrt(221))/10, (23 + sqrt(1517))/26, (53 + sqrt(7565))/56, (15 + 5*sqrt(26))/17, (157 + sqrt(71285))/178, (309 + sqrt(257045))/338, (86 + sqrt(21170))/97, (411 + sqrt(488597))/466, (791 +  sqrt(1687397))/866, (269 + sqrt(209306))/305, (1801 + sqrt(8732021))/1970, (2339 + sqrt(15800621))/2650, (2817 + sqrt(22953677))/3194, (5137 + sqrt(75533477))/5794, (7375 + sqrt(157326845))/8362, (10497 +  5*sqrt(11865269))/11482, (2953 + 5*sqrt(940706))/3233, (13407 + sqrt(514518485))/15122, ... .
%Y A305311 Cf. A002559, A305310.
%K A305311 nonn
%O A305311 1,1
%A A305311 _Wolfdieter Lang_, Jun 26 2018