A305314 Second member m_2(n) of the Markoff triple MT(n) with largest member m(n) = A002559(n), and smallest member m_1(n) = A305313(n), for n >= 1. These triples are conjectured to be unique.
1, 1, 2, 5, 5, 13, 34, 29, 13, 89, 29, 233, 169, 34, 610, 194, 1597, 985, 433, 194, 89, 4181, 169, 10946, 5741, 433, 2897, 1325, 233, 28657, 6466, 1325, 33461, 75025, 7561, 610, 985, 196418, 43261, 9077, 195025, 14701, 514229, 96557, 2897, 51641, 9077, 1597, 37666, 1346269, 7561, 1136689, 14701, 6466, 3524578, 646018, 294685, 135137, 62210, 5741
Offset: 1
Keywords
Examples
See A305313 for the first Markoff triples MT(n).
Formula
a(n) = m_2(n) is the fundamental proper solution y of the indefinite binary quadratic form x^2 - 3*m(n)*x*y + y^2, of discriminant D(n) = 9*m(n)^2 - 4 = A305312(n), representing -m(n)^2, for n >= 1, with x <= y. The uniqueness conjecture means that there are no other such fundamental solutions.
Comments