A305317 a(n) gives the length of the period of the regular continued fraction of the quadratic irrational of any Markoff form representative Mf(n), n >= 1 (assuming the uniqueness conjecture).
1, 1, 4, 6, 6, 8, 10, 8, 10, 12, 10, 14, 10, 14, 16, 14, 18, 12, 14, 16, 18, 20, 14, 22, 14, 16, 18, 20, 22, 24, 18, 22, 16, 26, 22, 26, 18, 28, 22, 26
Offset: 1
Keywords
Examples
The periods for the representative form Mf(n) with k(n) = A305311(n) are given for n=1..40 in the W. Lang link in Table 2. The first 11 examples (given by Perron) are: n periods length quadratic irrationals xi Markoff form coeffs. 1: (1) 1 (1 + sqrt(5))/2 [1, -1, -1] 2: (2) 1 1 + sqrt(2) [2, -4, -2] 3: (2_2, 1_2) 4 (9 + sqrt(221))/10 [5, -9, -7] 4: (2_2, 1_4) 6 (23 + sqrt(1517))/26 [13, -23,-19] 5: (2_4, 1_2) 6 (53 + sqrt(7565))/58 [29, -53, -4] 6: (2_2, 1_6) 8 (15 + 5*sqrt(26))/17 [34, -60, -50] 7: (2_2, 1_8) 10 (157 + sqrt(71285))/178 [89, -157, -131] 8: (2_6, 1_2) 8 (309 + sqrt(257045))/338 [169, -309, -239] 9: (2_2, 1_2, 2_2, 1_4) 10 (86 + sqrt(21170))/97 [194, -344, -284] 10: (2_2, 1_10) 12 (411 + sqrt(488597))/466 [233, -411, -343] 11: (2_4, 1_2, 2_2, 1_2) 10 (791 + sqrt(1687397))/866 [433, -791, -613] ...
References
- Aigner, Martin. Markov's theorem and 100 years of the uniqueness conjecture. A mathematical journey from irrational numbers to perfect matchings. Springer, 2013.
- Oskar Perron, Über die Approximation irrationaler Zahlen durch rationale, II, pp. 1-12, Sitzungsber. Heidelberger Akademie der Wiss., 1921, 8. Abhandlung, Carl Winters Universitätsbuchhandlung.
Comments