cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305332 Multiplicative order of 5 (mod A123692(n)^2).

This page as a plain text file.
%I A305332 #15 Jun 07 2018 22:03:18
%S A305332 1,10385,40486,13367790,1645333506,6692367336,11796759175
%N A305332 Multiplicative order of 5 (mod A123692(n)^2).
%C A305332 From _Eric Chen_, Jun 07 2018: (Start)
%C A305332     b    known Wieferich primes in base b (multiplicative order of b mod these primes (also these primes^2)) (if the order is p-1, then b is a primitive root to mod this prime (but not mod this prime^2), see A055578)
%C A305332     2    1093 (364), 3511 (1755)
%C A305332     3    11 (5), 1006003 (1006002)
%C A305332     4    1093 (182), 3511 (1755)
%C A305332     5    2 (1), 20771 (10385), 40487 (40486), 53471161 (13367790), 1645333507 (1645333506), 6692367337 (6692367336), 188748146801 (11796759175)
%C A305332     6    66161 (66160), 534851 (106970), 3152573 (788143)
%C A305332     7    5 (4), 491531 (245765)
%C A305332     8    3 (2), 1093 (364), 3511 (585)
%C A305332     9    2 (1), 11 (5), 1006003 (503001)
%C A305332    10    3 (1), 487 (486), 56598313 (56598312)
%C A305332    11    71 (70)
%C A305332    12    2693 (2692), 123653 (123652)
%C A305332    13    2 (1), 863 (862), 1747591 (873795)
%C A305332    14    29 (28), 353 (352), 7596952219 (7596952218)
%C A305332    15    29131 (29130), 119327070011 (59663535005)
%C A305332    16    1093 (91), 3511 (1755)
%C A305332    17    2 (1), 3 (2), 46021 (7670), 48947 (24473), 478225523351 (478225523350)
%C A305332    18    5 (4), 7 (3), 37 (36), 331 (110), 33923 (33922), 1284043 (428014)
%C A305332    19    3 (1), 7 (6), 13 (12), 43 (42), 137 (68), 63061489 (63061488)
%C A305332    20    281 (140), 46457 (46456), 9377747 (9377746), 122959073 (122959072)
%C A305332    21    2 (1)
%C A305332    22    13 (3), 673 (224), 1595813 (797906), 492366587 (246183293), 9809862296159 (44999368331)
%C A305332    23    13 (6), 2481757 (827252), 13703077 (13703076), 15546404183 (7773202091), 2549536629329 (2549536629328)
%C A305332    24    5 (2), 25633 (6408)
%C A305332 These orders n will satisfy that Phi_n(b) is divisible by p^2, where Phi is the cyclotomic polynomial. (Usually, Phi_n(b) is squarefree, but these are all exceptions; i.e., if p^2 divides Phi_n(b) (except the case p = 2, n = 2 and b == 3 (mod 4)), then p is a Wieferich prime in base b.)
%C A305332 (End)
%F A305332 a(n) = A305331(A123692(n)).
%o A305332 (PARI) v=[2, 20771, 40487, 53471161, 1645333507, 6692367337, 188748146801]; for(k=1, #v, print1(znorder(Mod(5, v[k]^2)), ", "))
%Y A305332 Cf. A123692, A211241, A305331, A305333.
%K A305332 nonn,hard,more
%O A305332 1,2
%A A305332 _Felix Fröhlich_, May 30 2018