This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A305332 #15 Jun 07 2018 22:03:18 %S A305332 1,10385,40486,13367790,1645333506,6692367336,11796759175 %N A305332 Multiplicative order of 5 (mod A123692(n)^2). %C A305332 From _Eric Chen_, Jun 07 2018: (Start) %C A305332 b known Wieferich primes in base b (multiplicative order of b mod these primes (also these primes^2)) (if the order is p-1, then b is a primitive root to mod this prime (but not mod this prime^2), see A055578) %C A305332 2 1093 (364), 3511 (1755) %C A305332 3 11 (5), 1006003 (1006002) %C A305332 4 1093 (182), 3511 (1755) %C A305332 5 2 (1), 20771 (10385), 40487 (40486), 53471161 (13367790), 1645333507 (1645333506), 6692367337 (6692367336), 188748146801 (11796759175) %C A305332 6 66161 (66160), 534851 (106970), 3152573 (788143) %C A305332 7 5 (4), 491531 (245765) %C A305332 8 3 (2), 1093 (364), 3511 (585) %C A305332 9 2 (1), 11 (5), 1006003 (503001) %C A305332 10 3 (1), 487 (486), 56598313 (56598312) %C A305332 11 71 (70) %C A305332 12 2693 (2692), 123653 (123652) %C A305332 13 2 (1), 863 (862), 1747591 (873795) %C A305332 14 29 (28), 353 (352), 7596952219 (7596952218) %C A305332 15 29131 (29130), 119327070011 (59663535005) %C A305332 16 1093 (91), 3511 (1755) %C A305332 17 2 (1), 3 (2), 46021 (7670), 48947 (24473), 478225523351 (478225523350) %C A305332 18 5 (4), 7 (3), 37 (36), 331 (110), 33923 (33922), 1284043 (428014) %C A305332 19 3 (1), 7 (6), 13 (12), 43 (42), 137 (68), 63061489 (63061488) %C A305332 20 281 (140), 46457 (46456), 9377747 (9377746), 122959073 (122959072) %C A305332 21 2 (1) %C A305332 22 13 (3), 673 (224), 1595813 (797906), 492366587 (246183293), 9809862296159 (44999368331) %C A305332 23 13 (6), 2481757 (827252), 13703077 (13703076), 15546404183 (7773202091), 2549536629329 (2549536629328) %C A305332 24 5 (2), 25633 (6408) %C A305332 These orders n will satisfy that Phi_n(b) is divisible by p^2, where Phi is the cyclotomic polynomial. (Usually, Phi_n(b) is squarefree, but these are all exceptions; i.e., if p^2 divides Phi_n(b) (except the case p = 2, n = 2 and b == 3 (mod 4)), then p is a Wieferich prime in base b.) %C A305332 (End) %F A305332 a(n) = A305331(A123692(n)). %o A305332 (PARI) v=[2, 20771, 40487, 53471161, 1645333507, 6692367337, 188748146801]; for(k=1, #v, print1(znorder(Mod(5, v[k]^2)), ", ")) %Y A305332 Cf. A123692, A211241, A305331, A305333. %K A305332 nonn,hard,more %O A305332 1,2 %A A305332 _Felix Fröhlich_, May 30 2018