A305352 Deletable primes (A080608) under the stricter rule that leading zeros are disallowed.
2, 3, 5, 7, 13, 17, 23, 29, 31, 37, 43, 47, 53, 59, 67, 71, 73, 79, 83, 97, 103, 107, 113, 127, 131, 137, 139, 157, 163, 167, 173, 179, 193, 197, 223, 229, 233, 239, 263, 269, 271, 283, 293, 307, 311, 313, 317, 331, 337, 347, 353, 359, 367, 373, 379, 383, 397, 431, 433, 439
Offset: 1
Examples
2003 is not a member since removing a digit will either give 003 which has a leading zero, or give one of the numbers 203 or 200 which are both composite. However, 2003 is in A080608 because all of 2003, 003, 03, 3 are prime.
Links
- Jeppe Stig Nielsen, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Rest@ Union@ Nest[Function[{a, p}, Append[a, With[{w = IntegerDigits[p]}, If[# == True, p, 0] &@ AnyTrue[Array[If[First@ # == 0, 1, FromDigits@ #] &@ Delete[w, #] &, Length@ w], ! FreeQ[a, #] &]]]] @@ {#, Prime[Length@ # + 1]} &, Prime@ Range@ PrimePi@ 10, 81] (* Michael De Vlieger, Aug 02 2018 *)
-
PARI
is(n) = !ispseudoprime(n)&&return(0);my(d=digits(n));#d==1&&return(1);for(i=1,#d,my(v=vecextract(d,Str("^"i)));v[1]!=0&&is(fromdigits(v))&&return(1));0
-
Python
from sympy import isprime def ok(n): if not isprime(n): return False if n < 10: return True s = str(n) si = (s[:i]+s[i+1:] for i in range(len(s))) return any(t[0] != '0' and ok(int(t)) for t in si) print([k for k in range(440) if ok(k)]) # Michael S. Branicky, Jan 28 2023
Comments