cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305374 First differences of A140101.

Original entry on oeis.org

2, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 2, 3, 3
Offset: 0

Views

Author

N. J. A. Sloane, Jun 09 2018

Keywords

Comments

Or, prefix A276788 with a 1 and then add 1 to every term.
This relation between A003144 and A140101 is a conjecture (Daniel Forgues remarks would trivially follow from this relation). - Michel Dekking, Mar 18 2019
The lengths of the successive runs of 3's are given by A275925.
a(n) seems to take only the values 2 or 3, where {a(n), a(n+1)} may be {3, 2} or {2, 3} or {3, 3}, but not {2, 2}. The second differences of A140101 (first differences of this sequence) thus seem to take only the values -1 or 0 or 1. - Daniel Forgues, Aug 19 2018
Conjecture: This sequence is 2.TTW(3,3,2) where TTW is the ternary tribonacci word defined in A080843, or equally it is THETA(3,3,2), where THETA is defined in A275925. - N. J. A. Sloane, Mar 19 2019
All these conjectures are now theorems - see the Dekking et al. paper. - N. J. A. Sloane, Jul 22 2019

Crossrefs

Formula

a(n) = A140101(n+1)-A140101(n).