A305377 Tribonacci representation of primes, written in base 10.
2, 3, 5, 8, 12, 16, 20, 22, 27, 37, 40, 48, 52, 54, 67, 74, 82, 84, 91, 99, 101, 108, 130, 137, 147, 152, 154, 162, 164, 169, 194, 198, 205, 209, 256, 258, 265, 273, 277, 288, 294, 297, 309, 320, 324, 326, 341, 358, 363, 365, 387, 394, 396, 409, 419, 426, 434, 436, 515, 520, 522, 534, 554, 560
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10001
Programs
-
Maple
L[0]:= [0]: L[1]:= [1]: for d from 2 to 15 do L[d]:= map(t -> (2*t, `if`(t mod 4 <> 3, 2*t+1,NULL)), L[d-1]) od: A003726:=map(op,[seq(L[i],i=0..15)]): seq(A003726[ithprime(i)+1],i=1..numtheory:-pi(nops(A003726)-1)); # Robert Israel, Jun 12 2018
-
Python
from sympy import prime def A305377(n): m, tlist, s = prime(n), [1,2,4], 0 while tlist[-1]+tlist[-2]+tlist[-3] <= m: tlist.append(tlist[-1]+tlist[-2]+tlist[-3]) for d in tlist[::-1]: s *= 2 if d <= m: s += 1 m -= d return s # Chai Wah Wu, Jun 12 2018
Extensions
More terms from Robert Israel, Jun 12 2018