This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A305402 #23 Sep 08 2022 08:46:21 %S A305402 1,1,-2,3,-4,2,15,-18,9,-2,105,-120,60,-16,2,945,-1050,525,-150,25,-2, %T A305402 10395,-11340,5670,-1680,315,-36,2,135135,-145530,72765,-22050,4410, %U A305402 -588,49,-2,2027025,-2162160,1081080,-332640,69300,-10080,1008,-64,2 %N A305402 A number triangle T(n,k) read by rows for 0<=k<=n, related to the Taylor expansion of f(u, p) = (1/2)*(1+1/(sqrt(1-u^2)))*exp(p*sqrt(1-u^2)). %C A305402 The function f(u, p) = (1/2)*(1+1/(sqrt(1-u^2))) * exp(p*sqrt(1-u^2)) was found while studying the Fresnel-Kirchhoff and the Rayleigh-Sommerfeld theories of diffraction, see the Meijer link. %C A305402 The Taylor expansion of f(u, p) leads to the number triangle T(n, k), see the example section. %C A305402 Normalization of the triangle terms, dividing the T(n, k) by T(n-k, 0), leads to A084534. %C A305402 The row sums equal A003436, n >= 2, respectively A231622, n >= 1. %D A305402 J. W. Goodman, Introduction to Fourier Optics, 1996. %D A305402 A. Papoulis, Systems and Transforms with Applications in Optics, 1968. %H A305402 Andrew Howroyd, <a href="/A305402/b305402.txt">Rows n=0..50 of triangle, flattened</a> %H A305402 M. J. Bastiaans, <a href="https://doi.org/10.1016/0030-4018(78)90080-9">The Wigner distribution function applied to optical signals and systems</a>, Optics Communications, Vol. 25, nr. 1, pp. 26-30, 1978. %H A305402 H. J. Butterweck, <a href="https://doi.org/10.1364/JOSA.67.000060">General theory of linear, coherent optical data processing systems</a>, Journal of the Optical Society of America, Vol. 67, nr. 1, pp. 60-70, 1977. %H A305402 J. W. Meijer, <a href="/A305402/a305402.pdf">A note on optical diffraction</a>, 1979. %F A305402 T(n, k) = (-1)^k*2^(k-n+1)*n*(2*n-k-1)!/(k!*(n-k)!), n > 0 and 0 <= k <= n, T(0, 0) = 1. %F A305402 T(n, k) = (-1)^k*A001147(n-k)*A084534(n, k), n >= 0 and 0 <= k <= n. %F A305402 T(n, k) = 2^(2*(k-n)+1)*A001147(n-k)*A127674(n, n-k), n > 0 and 0 <= k <= n, T(0, 0) = 1. %F A305402 T(n, k) = (-1)^k*(A001497(n, k) + A132062(n, k)), n >= 1, T(0,0) = 1. %e A305402 The first few terms of the Taylor expansion of f(u; p) are: %e A305402 f(u, p) = exp(p) * (1 + (1-2*p) * u^2/4 + (3-4*p+2*p^2) * u^4/16 + (15-18*p+9*p^2-2*p^3) * u^6/96 + (105-120*p+60*p^2-16*p^3+2*p^4) * u^8/768 + ... ) %e A305402 The first few rows of the T(n, k) triangle are: %e A305402 n=0: 1 %e A305402 n=1: 1, -2 %e A305402 n=2: 3, -4, 2 %e A305402 n=3: 15, -18, 9, -2 %e A305402 n=4: 105, -120, 60, -16, 2 %e A305402 n=5: 945, -1050, 525, -150, 25, -2 %e A305402 n=6: 10395, -11340, 5670, -1680, 315, -36, 2 %p A305402 T := proc(n, k): if n=0 then 1 else (-1)^k*2^(k-n+1)*n*(2*n-k-1)!/(k!*(n-k)!) fi: end: seq(seq(T(n, k), k=0..n), n=0..8); %t A305402 Table[If[n==0 && k==0,1, (-1)^k*2^(k-n+1)*n*(2*n-k-1)!/(k!*(n-k)!)], {n, 0, 10}, {k,0,n}]//Flatten (* _G. C. Greubel_, Nov 08 2018 *) %o A305402 (PARI) T(n,k) = {if(n==0, 1, (-1)^k*2^(k-n+1)*n*(2*n-k-1)!/(k!*(n-k)!))} %o A305402 for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print); \\ _Andrew Howroyd_, Nov 08 2018 %o A305402 (Magma) [[n le 0 select 1 else (-1)^k*2^(k-n+1)*Factorial(2*n-k-1)*Binomial(n, k)/Factorial(n-1): k in [0..n]]: n in [1..10]]; // _G. C. Greubel_, Nov 08 2018 %Y A305402 Cf. A003436, A231622, A032184, A084534, A127674, A132062, A001497. %Y A305402 Cf. Related to the left hand columns: A001147, A001193, A261065. %Y A305402 Cf. Related to the right hand columns: A280560, A162395, A006011, A040977, A053347, A054334, A266561. %K A305402 sign,easy,tabl %O A305402 0,3 %A A305402 _Johannes W. Meijer_, May 31 2018