This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A305409 #13 Jun 02 2018 13:09:09 %S A305409 1,3,5,7,9,15,17,21,25,27,31,33,35,45,49,51,63,65,73,75,81,85,93,99, %T A305409 105,107,119,125,127,129,135,147,153,155,165,175,189,195,217,219,225, %U A305409 231,243,245,255,257,273,279,289,297,313,315,321,325,341,343,357,365 %N A305409 Positive numbers that can be expressed as the product of 1 or more binary palindromes (elements of A006995). %H A305409 Robert Israel, <a href="/A305409/b305409.txt">Table of n, a(n) for n = 1..3086</a> %e A305409 155 is in the sequence because it is 5*31, and both 5 and 31 are palindromic numbers (with binary representations 101 and 11111, respectively). %p A305409 dmax:= 10: N:= 2^dmax: # to get all terms < N %p A305409 revdigs:= proc(n) %p A305409 local L, Ln, i; %p A305409 L:= convert(n, base, 2); %p A305409 Ln:= nops(L); %p A305409 add(L[i]*2^(Ln-i), i=1..Ln); %p A305409 end proc: %p A305409 A:= {}: %p A305409 for d from 2 to dmax do %p A305409 if d::even then %p A305409 A:= A union {seq(2^(d/2)*x + revdigs(x), x=2^(d/2-1)..2^(d/2)-1)} %p A305409 else %p A305409 m:= (d-1)/2; %p A305409 B:={seq(2^(m+1)*x + revdigs(x), x=2^(m-1)..2^m-1)}; %p A305409 A:= A union B union map(`+`, B, 2^m) %p A305409 fi %p A305409 od: %p A305409 R:= {1}: %p A305409 for b in A do %p A305409 R:= map(t -> seq(t*b^j,j=0..floor(log[b](N/t))), R) %p A305409 od: %p A305409 sort(convert(R,list)); # _Robert Israel_, Jun 01 2018 %Y A305409 Cf. A006995. %K A305409 nonn,base %O A305409 1,2 %A A305409 _Jeffrey Shallit_, May 31 2018