This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A305423 #7 Jun 08 2018 13:52:52 %S A305423 1,2,4,3,11,5,6,8,25,32,7,14,10,15,54,9,137,42,13,33,35,12,61,23,16, %T A305423 27,76,20,18,95,19,26,126,410,87,123,21,22,117,98,24,104,47,29,499,70, %U A305423 28,60,64,17,956,48,40,221,30,53,184,51,31,228,34,56,238,43,641,135,37,683,41,252,229,144,44,62,775,63,90,158,109,163,131,57 %N A305423 Permutation of natural numbers: a(n) = (A305421(n)+1)/2. %H A305423 Antti Karttunen, <a href="/A305423/b305423.txt">Table of n, a(n) for n = 1..13106</a> %H A305423 <a href="/index/Ge#GF2X">Index entries for sequences related to polynomials in ring GF(2)[X]</a> %H A305423 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %F A305423 a(n) = (A305421(n)+1)/2. %o A305423 (PARI) %o A305423 A091225(n) = polisirreducible(Pol(binary(n))*Mod(1, 2)); %o A305423 A305420(n) = { my(k=1+n); while(!A091225(k),k++); (k); }; %o A305423 A305421(n) = { my(f = subst(lift(factor(Pol(binary(n))*Mod(1, 2))),x,2)); for(i=1,#f~,f[i,1] = Pol(binary(A305420(f[i,1])))); fromdigits(Vec(factorback(f))%2,2); }; %o A305423 A305423(n) = ((1+A305421(n))/2); %Y A305423 Cf. A305424 (inverse). %Y A305423 Cf. A014580, A091225, A304521. %Y A305423 Cf. also A048673. %K A305423 nonn %O A305423 1,2 %A A305423 _Antti Karttunen_, Jun 08 2018