cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305474 Coefficients of Hilbert class polynomial H_D(x) as D runs through the numbers -3, -4, -7, -8, -11, -12, ... .

This page as a plain text file.
%I A305474 #32 Oct 14 2019 04:28:23
%S A305474 0,1,-1728,1,3375,1,-8000,1,32768,1,-54000,1,-121287375,191025,1,
%T A305474 -287496,1,884736,1,-681472000,-1264000,1,12771880859375,-5151296875,
%U A305474 3491750,1,14670139392,-4834944,1,12288000,1,-16581375,1,1566028350940383,-58682638134
%N A305474 Coefficients of Hilbert class polynomial H_D(x) as D runs through the numbers -3, -4, -7, -8, -11, -12, ... .
%H A305474 Seiichi Manyama, <a href="/A305474/b305474.txt">Rows n = 1..250, flattened</a>
%e A305474 D   |                0             1         2  3
%e A305474 ----+---------------------------------------------
%e A305474 -3  |                0,            1;
%e A305474 -4  |            -1728,            1;
%e A305474 -7  |             3375,            1;
%e A305474 -8  |            -8000,            1;
%e A305474 -11 |            32768,            1;
%e A305474 -12 |           -54000,            1;
%e A305474 -15 |       -121287375,       191025,        1;
%e A305474 -16 |          -287496,            1;
%e A305474 -19 |           884736,            1;
%e A305474 -20 |       -681472000,     -1264000,        1;
%e A305474 -23 |   12771880859375,  -5151296875,  3491750, 1;
%e A305474 -24 |      14670139392,     -4834944,        1;
%e A305474 -27 |         12288000,            1;
%e A305474 -28 |        -16581375,            1;
%e A305474 -31 | 1566028350940383, -58682638134, 39491307, 1;
%e A305474 -32 |      12167000000,    -52250000,        1;
%e A305474 -35 |    -134217728000,    117964800,        1;
%e A305474 -36 |   -1790957481984,   -153542016,        1;
%o A305474 (PARI) d(n) = 2*n+n%2;
%o A305474 T(n, k) = polcoef(polclass(-d(n)), k);
%o A305474 tabf(nn) = for(n=1, nn, for(k=0, poldegree(polclass(-d(n))), print1(T(n, k), ", ")); print)
%Y A305474 Cf. A014600, A014601, A032354, A305475 (constant).
%K A305474 sign,tabf,look
%O A305474 1,3
%A A305474 _Seiichi Manyama_, Jun 02 2018