This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A305492 #36 Dec 11 2024 07:03:58 %S A305492 0,2,4,22,72,298,1100,4286,16272,62546,238996,915814,3504600,13419898, %T A305492 51371996,196683278,752970528,2882724002,11036241700,42251551414, %U A305492 161756794728,619274449354,2370846461804,9076614069086,34749153370800 %N A305492 a(n) = ((1 + y)^n - (1 - y)^n)/y with y = sqrt(8). %H A305492 Colin Barker, <a href="/A305492/b305492.txt">Table of n, a(n) for n = 0..1000</a> %H A305492 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,7). %F A305492 E.g.f.: 2*exp(x)*sinh(sqrt(n)*x)/sqrt(n) for n = 8. %F A305492 From _Colin Barker_, Jun 02 2018: (Start) %F A305492 G.f.: 2*x / (1 - 2*x - 7*x^2). %F A305492 a(n) = 2*a(n-1) + 7*a(n-2) for n>1. %F A305492 (End) %e A305492 Array ((1+y)^n - (1-y)^n)/y with y = sqrt(k). %e A305492 [k\n] %e A305492 [1] 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, ... %e A305492 [2] 0, 2, 4, 10, 24, 58, 140, 338, 816, 1970, 4756, ... %e A305492 [3] 0, 2, 4, 12, 32, 88, 240, 656, 1792, 4896, 13376, ... %e A305492 [4] 0, 2, 4, 14, 40, 122, 364, 1094, 3280, 9842, 29524, ... %e A305492 [5] 0, 2, 4, 16, 48, 160, 512, 1664, 5376, 17408, 56320, ... %e A305492 [6] 0, 2, 4, 18, 56, 202, 684, 2378, 8176, 28242, 97364, ... %e A305492 [7] 0, 2, 4, 20, 64, 248, 880, 3248, 11776, 43040, 156736, ... %e A305492 [8] 0, 2, 4, 22, 72, 298, 1100, 4286, 16272, 62546, 238996, ... %e A305492 [9] 0, 2, 4, 24, 80, 352, 1344, 5504, 21760, 87552, 349184, ... %p A305492 egf := (n,x) -> 2*exp(x)*sinh(sqrt(n)*x)/sqrt(n): %p A305492 ser := series(egf(8,x), x, 26): %p A305492 seq(n!*coeff(ser,x, n), n=0..24); %t A305492 Table[Simplify[((1 + Sqrt[8])^n - (1 - Sqrt[8])^n)/ Sqrt[8]], {n, 0, 24}] %o A305492 (PARI) concat(0, Vec(2*x / (1 - 2*x - 7*x^2) + O(x^40))) \\ _Colin Barker_, Jun 05 2018 %Y A305492 Let f(n, y) = ((1 + y)^n - (1 - y)^n)/y. %Y A305492 f(n, 1 ) = A000079(n); %Y A305492 f(n, sqrt(2)) = A163271(n+1); %Y A305492 f(n, sqrt(3)) = A028860(n+2); %Y A305492 f(n, 2 ) = A152011(n) for n>0; %Y A305492 f(n, sqrt(5)) = A103435(n); %Y A305492 f(n, sqrt(6)) = A083694(n); %Y A305492 f(n, sqrt(7)) = A274520(n); %Y A305492 f(n, sqrt(8)) = a(n); %Y A305492 f(n, 3 ) = A192382(n+1); %Y A305492 Cf. A305491. %Y A305492 Equals 2 * A015519. %K A305492 nonn,easy %O A305492 0,2 %A A305492 _Peter Luschny_, Jun 02 2018