This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A305494 #25 Jun 03 2018 07:43:53 %S A305494 0,1728,-3375,8000,-32768,54000,-191025,287496,-884736,1264000, %T A305494 -3491750,4834944,-12288000,16581375,-39491307,52250000,-117964800, %U A305494 153542016,-331531596,425692800,-884736000,1122662608,-2257834125,2835810000,-5541101568,6896880000,-13136684625 %N A305494 Let s(D) = Sum_{(a,b,c)} j((-b+sqrt(D))/(2*a)) where (a,b,c) is taken over all the primitive reduced binary quadratic forms a*x^2+b*xy+c*y^2 with b^2-4*ac = D. This sequence is s(D) as D runs through the numbers -3, -4, -7, -8, -11, -12, ... . %H A305494 Seiichi Manyama, <a href="/A305494/b305494.txt">Table of n, a(n) for n = 1..1000</a> %e A305494 In the case D = -15, %e A305494 j((1+sqrt(-15))/2) + j((1+sqrt(-15))/4) = (-191025-85995*sqrt(5))/2 + (-191025+85995*sqrt(5))/2 = -191025. %e A305494 ----+-------------------------------------------+--------- %e A305494 D | Coefficients of Hilbert class polynomial | a(n) %e A305494 ----+-------------------------------------------+--------- %e A305494 -3 | 0, 1; | 0 %e A305494 -4 | -1728, 1; | 1728 %e A305494 -7 | 3375, 1; | -3375 %e A305494 -8 | -8000, 1; | 8000 %e A305494 -11 | 32768, 1; | -32768 %e A305494 -12 | -54000, 1; | 54000 %e A305494 -15 | -121287375, 191025, 1; | -191025 %e A305494 -16 | -287496, 1; | 287496 %e A305494 -19 | 884736, 1; | -884736 %e A305494 -20 | -681472000, -1264000, 1; | 1264000 %e A305494 -23 | 12771880859375, -5151296875, 3491750, 1;| -3491750 %e A305494 -24 | 14670139392, -4834944, 1; | 4834944 %Y A305494 Cf. A014601, A032354, A305474. %K A305494 sign %O A305494 1,2 %A A305494 _Seiichi Manyama_, Jun 02 2018