cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305499 Square array A(n,k), n > 0 and k > 0, read by antidiagonals, with initial values A(1,k) = k and recurrence equations A(n+1,k) = A(n,k) for 0 < k <= n and A(n+1,k) = A(n,k) - A000035(n+k) for 0 < n < k.

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 1, 1, 3, 4, 1, 1, 2, 3, 5, 1, 1, 2, 3, 5, 6, 1, 1, 2, 2, 4, 5, 7, 1, 1, 2, 2, 4, 5, 7, 8, 1, 1, 2, 2, 3, 4, 6, 7, 9, 1, 1, 2, 2, 3, 4, 6, 7, 9, 10, 1, 1, 2, 2, 3, 3, 5, 6, 8, 9, 11, 1, 1, 2, 2, 3, 3, 5, 6, 8, 9, 11, 12, 1, 1, 2, 2, 3, 3, 4, 5, 7, 8, 10, 11, 13
Offset: 1

Views

Author

Werner Schulte, Jun 03 2018

Keywords

Examples

			The square array begins:
  n\k |  1  2  3  4  5  6  7  8  9  10  11  12
  ====+=======================================
    1 |  1  2  3  4  5  6  7  8  9  10  11  12
    2 |  1  1  3  3  5  5  7  7  9   9  11  11
    3 |  1  1  2  3  4  5  6  7  8   9  10  11
    4 |  1  1  2  2  4  4  6  6  8   8  10  10
    5 |  1  1  2  2  3  4  5  6  7   8   9  10
    6 |  1  1  2  2  3  3  5  5  7   7   9   9
    7 |  1  1  2  2  3  3  4  5  6   7   8   9
    8 |  1  1  2  2  3  3  4  4  6   6   8   8
    9 |  1  1  2  2  3  3  4  4  5   6   7   8
   10 |  1  1  2  2  3  3  4  4  5   5   7   7
   11 |  1  1  2  2  3  3  4  4  5   5   6   7
etc.
		

Crossrefs

Cf. A000012 (col 1), A054977 (col 2), A000027 (row 1), A109613 (row 2), A028310 (row 3), A008619 (main diagonal and subdiagonals).

Formula

A(n,k) = floor((k+1)/2) for 1 <= k <= n and A(n,k) = floor((k+1)/2) + floor((k+1-n)/2) for 1 <= n < k.
A(n+m,n) = floor((n+1)/2) for n > 0 and some fixed m >= 0.
A(n,n+m) = floor((m+1)/2) + floor((n+1+m)/2) for n>0 and some fixed m >= 0.
A(n+1,k+1) = A(n,k+1) + A(n,k) - A(n-1,k) for k > 0 and n > 1.
A(n,k) = A(n,k-1) + 2*A(n,k-2) - 2*A(n,k-3) - A(n,k-4) + A(n,k-5) for n > 0 and k > 5.
A(n,n) = A008619(n-1) for n > 0.
A(n+1,2*n-1) = A001651(n) for n > 0.
Sum_{i=1..n} A(i,i)*A209229(i) = 2^floor(log_2(n)) for n > 0.
P(n,x) = Sum_{k>0} A(n,k)*x^(k-1) = (1-x^(2*n))/((1-x^n)*(1-x^2)*(1-x)) = (1+x^n)/((1-x^2)*(1-x)) for n > 0.
P(n+1,x) = P(n,x) - x^n/(1-x^2) for n > 0 and P(1,x) = 1/(1-x)^2.
G.f.: Sum_{n>0, k>0} A(n,k)*x^(k-1)*y^(n-1) = (1+x-2*x*y)/((1-x)*(1-x^2) * (1-y)*(1-x*y)).
Conjecture: Sum_{i=1..n} A(n+1-i,i) = A211538(n+3) for n > 0.