This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A305503 #32 Jun 01 2020 20:48:33 %S A305503 0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,9,10,11,12,13,14,15,16,17,18,19,20,21, %T A305503 22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40 %N A305503 Largest cardinality of subsets A of {0,1,...,n-1} with |A + A| > |A - A|. %C A305503 All the possible 'A's are explicitly generated and sorted according to their cardinality. %H A305503 P. V. Hegarty, <a href="https://www.impan.pl/shop/en/publication/transaction/download/product/83466">Some explicit constructions of sets with more sums than differences</a>, Acta Arith., 130 (2007), 61-77. %H A305503 Greg Martin and Kevin O'Bryant, <a href="http://arxiv.org/abs/math/0608131">Many sets have more sums than differences</a>, arXiv:math/0608131 [math.NT], 2006-2007. %F A305503 a(n) = n - 7 (conjectured) for all n > 15. %F A305503 Conjectures from _Colin Barker_, Jun 01 2020: (Start) %F A305503 G.f.: x^14*(9 - 9*x + x^2) / (1 - x)^2. %F A305503 a(n) = 2*a(n-1) - a(n-2) for n>17. %F A305503 (End) %e A305503 For n = 15, the subsets A of {0,1,...,n-1} with |A + A| > |A - A| are (0, 2, 3, 4, 7, 11, 12, 14); (0, 2, 3, 7, 10, 11, 12, 14); (0, 1, 2, 4, 5, 9, 12, 13, 14) and (0, 1, 2, 5, 9, 10, 12, 13, 14). So, the largest cardinality is 9. %o A305503 (Python) %o A305503 import numpy as np %o A305503 import itertools %o A305503 def findsubsets(S, m): %o A305503 return itertools.combinations(S, m) %o A305503 def mstd(a): %o A305503 a1 = set() %o A305503 a2 = set() %o A305503 for i in a: %o A305503 for j in a: %o A305503 a1.add(i + j) %o A305503 a2.add(i - j) %o A305503 return len(a1) > len(a2) %o A305503 def a(n): %o A305503 ans = 0 %o A305503 Nn = list(range(n)) %o A305503 for k in range(1, n): %o A305503 if any(mstd(i) for i in findsubsets(Nn, k)): %o A305503 ans = k %o A305503 return ans %Y A305503 Cf. A118544, A222807, A222808, A291514. %K A305503 more,hard,nonn %O A305503 1,15 %A A305503 _Tanuj Mathur_, Jun 03 2018