This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A305504 #6 Jun 04 2018 09:22:19 %S A305504 1,2,3,4,5,7,8,9,10,11,13,16,17,19,20,22,23,25,27,29,31,32,33,34,37, %T A305504 40,41,43,44,46,47,49,50,53,55,57,59,61,62,64,66,67,68,71,73,79,80,81, %U A305504 82,83,85,88,89,92,93,94,97,99,100,101,103,107,109,110,113,115 %N A305504 Heinz numbers of integer partitions whose distinct parts plus 1 are connected. %C A305504 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %C A305504 Given a finite set S of positive integers greater than one, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices with a common divisor greater than 1. For example, G({6,14,15,35}) is a 4-cycle. A partition y is said to be connected if G(U(y + 1)) is a connected graph, where U(y + 1) is the set of distinct successors of the parts of y. %C A305504 This is intended to be a cleaner form of A305078, where the treatment of empty multisets is arbitrary. %e A305504 The sequence of entries together with the corresponding twice-prime-factored multiset partitions (see A275024) begins: %e A305504 1: {} %e A305504 2: {{1}} %e A305504 3: {{2}} %e A305504 4: {{1},{1}} %e A305504 5: {{1,1}} %e A305504 7: {{3}} %e A305504 8: {{1},{1},{1}} %e A305504 9: {{2},{2}} %e A305504 10: {{1},{1,1}} %e A305504 11: {{1,2}} %e A305504 13: {{4}} %e A305504 16: {{1},{1},{1},{1}} %e A305504 17: {{1,1,1}} %e A305504 19: {{2,2}} %e A305504 20: {{1},{1},{1,1}} %e A305504 22: {{1},{1,2}} %t A305504 primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A305504 zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]]; %t A305504 Select[Range[300],Length[zsm[primeMS[#]+1]]<=1&] %Y A305504 Cf. A001221, A048143, A056239, A112798, A275024, A286518, A290103, A302242, A304714, A304716, A305052, A305078, A305079, A305501. %K A305504 nonn %O A305504 1,2 %A A305504 _Gus Wiseman_, Jun 03 2018