cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305531 Smallest k >= 1 such that (n-1)*n^k + 1 is prime.

This page as a plain text file.
%I A305531 #40 May 06 2021 23:10:27
%S A305531 1,1,1,2,1,1,2,1,3,10,3,1,2,1,1,4,1,29,14,1,1,14,2,1,2,4,1,2,4,5,12,2,
%T A305531 1,2,2,9,16,1,2,80,1,2,4,2,3,16,2,2,2,1,15,960,15,1,4,3,1,14,1,6,20,1,
%U A305531 3,946,6,1,18,10,1,4,1,5,42,4,1,828,1,1,2,1,12,2,6,4,30,3,3022,2,1,1
%N A305531 Smallest k >= 1 such that (n-1)*n^k + 1 is prime.
%C A305531 a(prime(j)) + 1 = A087139(j).
%C A305531 a(123) > 10^5, a(342) > 10^5, see the Barnes link for the Sierpinski base-123 and base-342 problems.
%C A305531 a(251) > 73000, see A087139.
%H A305531 Eric Chen, <a href="/A305531/b305531.txt">Table of n, a(n) for n = 2..122</a>
%H A305531 Gary Barnes, <a href="http://www.noprimeleftbehind.net/crus/Sierp-conjectures.htm">Sierpinski conjectures and proofs</a>
%H A305531 Eric Chen, <a href="/A305531/a305531.txt">Table n, a(n) for n = 2..360 status</a>
%o A305531 (PARI) a(n)=for(k=1,2^16,if(ispseudoprime((n-1)*n^k+1),return(k)))
%Y A305531 For the numbers k such that these forms are prime:
%Y A305531 a1(b): numbers k such that (b-1)*b^k-1 is prime
%Y A305531 a2(b): numbers k such that (b-1)*b^k+1 is prime
%Y A305531 a3(b): numbers k such that (b+1)*b^k-1 is prime
%Y A305531 a4(b): numbers k such that (b+1)*b^k+1 is prime (no such k exists when b == 1 (mod 3))
%Y A305531 a5(b): numbers k such that b^k-(b-1) is prime
%Y A305531 a6(b): numbers k such that b^k+(b-1) is prime
%Y A305531 a7(b): numbers k such that b^k-(b+1) is prime
%Y A305531 a8(b): numbers k such that b^k+(b+1) is prime (no such k exists when b == 1 (mod 3)).
%Y A305531 Using "-------" if there is currently no OEIS sequence and "xxxxxxx" if no such k exists (this occurs only for a4(b) and a8(b) for b == 1 (mod 3)):
%Y A305531 .
%Y A305531    b   a1(b)   a2(b)   a3(b)   a4(b)   a5(b)   a6(b)   a7(b)   a8(b)
%Y A305531 --------------------------------------------------------------------
%Y A305531    2 A000043 ------- A002235 A002253 A000043 ------- A050414 A057732
%Y A305531    3 A003307 A003306 A005540 A005537 A014224 A051783 A058959 A058958
%Y A305531    4 A272057 ------- ------- xxxxxxx A059266 A089437 A217348 xxxxxxx
%Y A305531    5 A046865 A204322 A257790 A143279 A059613 A124621 A165701 A089142
%Y A305531    6 A079906 A247260 ------- ------- A059614 A145106 A217352 A217351
%Y A305531    7 A046866 A245241 ------- xxxxxxx A191469 A217130 A217131 xxxxxxx
%Y A305531    8 A268061 A269544 ------- ------- A217380 A217381 A217383 A217382
%Y A305531    9 A268356 A056799 ------- ------- A177093 A217385 A217493 A217492
%Y A305531   10 A056725 A056797 A111391 xxxxxxx A095714 A088275 A092767 xxxxxxx
%Y A305531   11 A046867 A057462 ------- ------- ------- ------- ------- -------
%Y A305531   12 A079907 A251259 ------- ------- ------- A137654 ------- -------
%Y A305531   13 A297348 ------- ------- xxxxxxx ------- ------- ------- xxxxxxx
%Y A305531   14 A273523 ------- ------- ------- ------- ------- ------- -------
%Y A305531   15 ------- ------- ------- ------- ------- ------- ------- -------
%Y A305531   16 ------- ------- ------- xxxxxxx ------- ------- ------- xxxxxxx
%Y A305531 Cf. (smallest k such that these forms are prime) A122396 (a1(b)+1 for prime b), A087139 (a2(b)+1 for prime b), A113516 (a5(b)), A076845 (a6(b)), A178250 (a7(b)).
%K A305531 nonn
%O A305531 2,4
%A A305531 _Eric Chen_, Jun 04 2018