This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A305540 #17 Sep 27 2018 12:34:35 %S A305540 1,1,1,1,2,1,4,3,1,6,6,1,10,21,12,1,14,36,24,1,22,93,132,60,1,30,150, %T A305540 240,120,1,46,345,900,960,360,1,62,540,1560,1800,720,1,94,1173,4980, %U A305540 9300,7920,2520,1,126,1806,8400,16800,15120,5040,1,190,3801,24612,71400,103320,73080,20160,1,254,5796,40824,126000,191520,141120,40320 %N A305540 Triangle read by rows: T(n,k) is the number of achiral loops (necklaces or bracelets) of length n using exactly k different colors. %C A305540 The number of achiral necklaces is equivalent to the number of achiral bracelets. %F A305540 T(n,k) = (k!/2) * (S2(floor((n+1)/2),k) + S2(ceiling((n+1)/2),k)), where S2(n,k) is the Stirling subset number A008277. %F A305540 T(n,k) = 2*A273891(n,k) - A087854(n,k). %F A305540 G.f. for column k>1: (k!/2) * x^(2k-2) * (1+x)^2 / Product_{i=1..k} (1-i x^2). - _Robert A. Russell_, Sep 26 2018 %e A305540 The triangle begins with T(1,1): %e A305540 1; %e A305540 1, 1; %e A305540 1, 2; %e A305540 1, 4, 3; %e A305540 1, 6, 6; %e A305540 1, 10, 21, 12; %e A305540 1, 14, 36, 24; %e A305540 1, 22, 93, 132, 60; %e A305540 1, 30, 150, 240, 120; %e A305540 1, 46, 345, 900, 960, 360; %e A305540 1, 62, 540, 1560, 1800, 720; %e A305540 1, 94, 1173, 4980, 9300, 7920, 2520; %e A305540 1, 126, 1806, 8400, 16800, 15120, 5040; %e A305540 1, 190, 3801, 24612, 71400, 103320, 73080, 20160; %e A305540 1, 254, 5796, 40824, 126000, 191520, 141120, 40320; %e A305540 1, 382, 11973, 113652, 480060, 1048320, 1234800, 745920, 181440; %e A305540 1, 510, 18150, 186480, 834120, 1905120, 2328480, 1451520, 362880; %e A305540 For a(4,2)=4, the achiral loops are AAAB, AABB, ABAB, and ABBB. %t A305540 Table[(k!/2) (StirlingS2[Floor[(n + 1)/2], k] + StirlingS2[Ceiling[(n + 1)/2], k]), {n, 1, 15}, {k, 1, Ceiling[(n + 1)/2]}] // Flatten %o A305540 (PARI) T(n, k) = (k!/2)*(stirling(floor((n+1)/2), k, 2)+stirling(ceil((n+1)/2), k, 2)); %o A305540 tabf(nn) = for(n=1, nn, for (k=1, ceil((n+1)/2), print1(T(n, k), ", ")); print); \\ _Michel Marcus_, Jul 02 2018 %Y A305540 Odd rows are A019538. %Y A305540 Even rows are A172106. %Y A305540 Columns 1-6 are A057427, A027383, A056489, A056490, A056491, and A056492. %K A305540 nonn,tabf,easy %O A305540 1,5 %A A305540 _Robert A. Russell_, Jun 04 2018