This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A305566 #13 Jun 07 2018 22:01:23 %S A305566 0,0,0,0,0,2,0,0,0,2,0,10,0,2,2,0,0,10,0,10,2,2,0,44,0,2,0,10,0,84,0, %T A305566 0,2,2,2,122,0,2,2,44,0,84,0,10,10,2,0,184,0,10,2,10,0,44,2,44,2,2,0, %U A305566 1590,0,2,10,0,2,84,0,10,2,84,0,1156,0,2,10,10,2 %N A305566 Number of finite sets of relatively prime positive integers > 1 with least common multiple n. %C A305566 From _Robert Israel_, Jun 06 2018: (Start) %C A305566 a(n) depends only on the prime signature of n. %C A305566 If n is in A000961, a(n)=0. %C A305566 If n is in A006881, a(n)=2. (End) %C A305566 If n = p^k*q, where p and q are distinct primes and k >= 1, then a(n) = 3*4^(k-1)-2^(k-1). - _Robert Israel_, Jun 07 2018 %H A305566 Robert Israel, <a href="/A305566/b305566.txt">Table of n, a(n) for n = 1..10000</a> %e A305566 The a(12) = 10 sets: %e A305566 {3,4}, %e A305566 {2,3,4}, {2,3,12}, {3,4,6}, {3,4,12}, %e A305566 {2,3,4,6}, {2,3,4,12}, {2,3,6,12}, {3,4,6,12}, %e A305566 {2,3,4,6,12}. %p A305566 f:= proc(n) g(sort(map(t -> t[2],ifactors(n)[2]))) end proc: %p A305566 f(1):= 0: %p A305566 g:= proc(L) option remember; %p A305566 local nL, Cands, nC, Cons, i; %p A305566 nL:= nops(L); %p A305566 Cands:= [[]]; %p A305566 for i from 1 to nL do %p A305566 Cands:= [seq(seq([op(s),t],t=0..L[i]),s=Cands)]; %p A305566 od: %p A305566 Cands:= remove(t -> max(t)=0, Cands); %p A305566 nC:= nops(Cands); %p A305566 Cons:= [seq(select(t -> Cands[t][i]=0, {$1..nC}),i=1..nL), %p A305566 seq(select(t -> Cands[t][i]=L[i], {$1..nC}), i=1..nL)]; %p A305566 h(Cons, {$1..nC}) %p A305566 end proc: %p A305566 h:= proc(Cons, Cands) %p A305566 local t,i,Consi, Candsi; %p A305566 if Cons = [] then return 2^nops(Cands) fi; %p A305566 t:= 0; %p A305566 for i from 1 to nops(Cons[1]) do %p A305566 Consi:= map(proc(t) if member(Cons[1][i],t) then NULL else t minus Cons[1][1..i-1] fi end proc, Cons[2..-1]); %p A305566 if member({},Consi) then next fi; %p A305566 Candsi:= Cands minus Cons[1][1..i]; %p A305566 t:= t + procname(Consi, Candsi) %p A305566 od; %p A305566 t %p A305566 end proc: %p A305566 map(f, [$1..100]); # _Robert Israel_, Jun 07 2018 %t A305566 Table[Length[Select[Subsets[Rest[Divisors[n]]],And[GCD@@#==1,LCM@@#==n]&]],{n,100}] %Y A305566 Cf. A000961, A006881, A076078, A181819, A281116, A285572, A290103, A304818, A305563, A305564, A305565, A305567. %K A305566 nonn %O A305566 1,6 %A A305566 _Gus Wiseman_, Jun 05 2018