This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A305569 #29 Aug 08 2023 22:22:20 %S A305569 0,0,0,0,480,92160,861557760,300261256888320,1835082185382168791040 %N A305569 Number of bachelor diagonal Latin squares of order n. %C A305569 A bachelor diagonal Latin square is one with no orthogonal mate. %H A305569 E. I. Vatutin, <a href="http://forum.boinc.ru/default.aspx?g=posts&m=90756#post90756">Discussion about properties of diagonal Latin squares at forum.boinc.ru</a> (in Russian) %H A305569 E. I. Vatutin, <a href="http://evatutin.narod.ru/evatutin_dls_spec_types_list.pdf">Special types of diagonal Latin squares</a>, Cloud and distributed computing systems in electronic control conference, within the National supercomputing forum (NSCF - 2022). Pereslavl-Zalessky, 2023. pp. 9-18. (in Russian) %H A305569 E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, I. I. Citerra, <a href="http://evatutin.narod.ru/evatutin_co_dls_bachelors_cnt.pdf">Estimation of the probability of finding orthogonal diagonal Latin squares among general diagonal Latin squares</a>, Recognition - 2018. Kursk: SWSU, 2018. pp. 72-74. (in Russian) %H A305569 Eduard I. Vatutin, Natalia N. Nikitina, Maxim O. Manzuk, <a href="https://vk.com/wall162891802_1485">First results of an experiment on studying the properties of DLS of order 9 in the volunteer distributed computing projects Gerasim@Home and RakeSearch</a> (in Russian). %H A305569 Eduard I. Vatutin, Natalia N. Nikitina, Maxim O. Manzuk, <a href="https://vk.com/wall162891802_1496">Additional calculated results of an experiment on studying the properties of DLS of order 9 in the volunteer distributed computing projects Gerasim@Home and RakeSearch</a> (in Russian). %H A305569 <a href="/index/La#Latin">Index entries for sequences related to Latin squares and rectangles</a>. %F A305569 a(n) = A305568(n) * n!. %F A305569 a(n) = A274806(n) - A305571(n). %Y A305569 Cf. A266177, A305568, A305571. %K A305569 nonn,more,hard %O A305569 1,5 %A A305569 _Eduard I. Vatutin_, Jun 05 2018 %E A305569 a(9) added by _Eduard I. Vatutin_, Dec 22 2020