This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A305570 #48 Aug 07 2023 19:44:34 %S A305570 1,0,0,2,4,0,256,632064,95024976 %N A305570 Number of diagonal Latin squares of order n with the first row in order and at least one orthogonal diagonal mate. %H A305570 E. I. Vatutin, <a href="http://forum.boinc.ru/default.aspx?g=posts&m=90756#post90756">Discussion about properties of diagonal Latin squares at forum.boinc.ru</a> (in Russian) %H A305570 E. I. Vatutin, <a href="http://evatutin.narod.ru/evatutin_dls_spec_types_list.pdf">Special types of diagonal Latin squares</a>, Cloud and distributed computing systems in electronic control conference, within the National supercomputing forum (NSCF - 2022). Pereslavl-Zalessky, 2023. pp. 9-18. (in Russian) %H A305570 E. Vatutin and A. Belyshev, <a href="https://www.springerprofessional.de/en/enumerating-the-orthogonal-diagonal-latin-squares-of-small-order/18659992">Enumerating the Orthogonal Diagonal Latin Squares of Small Order for Different Types of Orthogonality</a>, Communications in Computer and Information Science, Vol. 1331, Springer, 2020, pp. 586-597. %H A305570 E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, and I. I. Citerra, <a href="http://evatutin.narod.ru/evatutin_co_dls_bachelors_cnt.pdf">Estimation of the probability of finding orthogonal diagonal Latin squares among general diagonal Latin squares</a>, Recognition - 2018. Kursk: SWSU, 2018. pp. 72-74. (in Russian) %H A305570 Eduard I. Vatutin, Natalia N. Nikitina, and Maxim O. Manzuk, <a href="https://vk.com/wall162891802_1485">First results of an experiment on studying the properties of DLS of order 9 in the volunteer distributed computing projects Gerasim@Home and RakeSearch</a> (in Russian). %H A305570 Eduard I. Vatutin, Natalia N. Nikitina, and Maxim O. Manzuk, <a href="https://vk.com/wall162891802_1496">Additional calculated results of an experiment on studying the properties of DLS of order 9 in the volunteer distributed computing projects Gerasim@Home and RakeSearch</a> (in Russian). %H A305570 Eduard I. Vatutin, <a href="http://evatutin.narod.ru/evatutin_odls_1_to_8.zip">List of all main classes of orthogonal diagonal Latin squares of orders 1-8</a>. %H A305570 <a href="/index/La#Latin">Index entries for sequences related to Latin squares and rectangles</a>. %F A305570 a(n) = A305571(n) / n!. %F A305570 a(n) = A274171(n) - A305568(n). %Y A305570 Cf. A274171, A305568, A305571, A330391. %K A305570 nonn,more,hard %O A305570 1,4 %A A305570 _Eduard I. Vatutin_, Jun 05 2018 %E A305570 Name clarified by _Andrew Howroyd_, Oct 19 2020 %E A305570 a(9) added by _Eduard I. Vatutin_, Dec 22 2020