This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A305579 #26 Jul 27 2018 14:40:46 %S A305579 1,2,3,3,4,5,4,5,6,87,5,5,7,8,87,6,7,11,83,10,1151,7,8,9,29,235,12, %T A305579 5371,8,8,10,79,215,395,14,199276,9,10,13,12,131,511,5275,16,32281747, %U A305579 10,11,12,37,14,196,8729,76128,18,16946784207,11,11,13,14,67,16,3983,20526,9782734,20 %N A305579 Square array read by antidiagonals upwards in which row k has k as its first term and each subsequent term is the least possible value such that the sum of any 2 or more terms does not equal a prime. %C A305579 Rows which appear to have consecutive even numbers are for k = 2, 6, 8, 14, 18, 20, 26, 36, 44, 48, 50, 54,56, 68, 74, 78, 86, 96, 114, ..., . %C A305579 Conjecture: these row terms are a proper subset of A005843. %e A305579 Row 1 is A133660 and is a good illustration of the definition. %e A305579 Array begins: %e A305579 ============================================================================ %e A305579 k\n| 1 2 3 4 5 6 7 8 9 10 %e A305579 ---|------------------------------------------------------------------------ %e A305579 1 | 1, 3, 5, 87, 113, 1151, 5371, 199276, 32281747, 16946784207, ..., ; %e A305579 2 | 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, ..., ; %e A305579 3 | 3, 5, 7, 83, 235, 395, 5275, 76128, 9782734, ..., ; %e A305579 4 | 4, 5, 11, 29, 215, 511, 8729, 20526, 9745499, ..., ; %e A305579 5 | 5, 7, 9, 79, 131, 196, 3983, 16380, 270270, ..., ; %e A305579 6 | 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, ..., ; %e A305579 7 | 7, 8, 13, 37, 67, 1087, 5128, 137886, 6353767, ..., ; %e A305579 8 | 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, ..., ; %e A305579 9 | 9, 11, 13, 71, 112, 281, 1952, 147630, 1729159, ..., ; %e A305579 10 | 10, 11, 14, 25, 94, 756, 2394, 28480, 1466566, ..., ; %e A305579 11 | 11, 13, 14, 25, 109, 559, 2719, 57985, 2589731, ..., ; %e A305579 12 | 12, 13, 14, 37, 79, 673, 2929, 113256, 9708060, ..., ; %e A305579 13 | 13, 14, 19, 31, 97, 882, 2028, 161340, 3635970, ..., ; %e A305579 14 | 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, ..., ; %e A305579 15 | 15, 17, 18, 31, 137, 502, 7983, 599346, 27105801, ..., ; %e A305579 16 | 16, 17, 18, 47, 107, 395, 6480, 91140, 467730, ..., ; %e A305579 17 | 17, 18, 21, 31, 77, 637, 3609, 77910, 652680, ..., ; %e A305579 18 | 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, ..., ; %e A305579 19 | 19, 20, 25, 30, 61, 235, 2965, 4415, 394170, 5769540, ..., ; %e A305579 20 | 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, ..., ; %e A305579 21 | 21, 23, 25, 47, 73, 797, 20419, 235665, ..., ; %e A305579 22 | 22, 23, 27, 42, 69, 462, 672, 783, 71652, 935298, ..., ; %e A305579 23 | 23, 25, 26, 37, 73, 1555, 4219, 196260, 3698520, ..., ; %e A305579 24 | 24, 25, 26, 31, 193, 504, 3756, 91831, 7703843, ..., ; %e A305579 25 | 25, 26, 29, 31, 39, 750, 4350, 85830, 661350, ..., ; %e A305579 26 | 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, ..., ; %e A305579 27 | 27, 28, 29, 35, 232, 888, 5670, 134400, 4058376, ..., ; %e A305579 28 | 28, 29, 34, 53, 59, 1045, 3696, 249240, 9475589, ..., ; %e A305579 29 | 29, 31, 33, 55, 57, 674, 6581, 126272, 2549747, ..., ; %e A305579 30 | 30, 32, 33, 52, 60, 63, 90, 120, 150, 180, ..., ; %e A305579 31 | 31, 32, 33, 54, 90, 714, 9450, 188850, 2598573, ..., ; %e A305579 32 | 32, 33, 37, 45, 138, 597, 2703, 101055, 2754885, ..., ; %e A305579 33 | 33, 35, 37, 47, 133, 555, 4155, 332885, 3090195, ..., ; %e A305579 34 | 34, 35, 41, 43, 77, 594, 2940, 35700, 2323246, ..., ; %e A305579 35 | 35, 37, 39, 43, 210, 1061, 10125, 372955, 30373014, ..., ; %e A305579 36 | 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, ..., ; %e A305579 37 | 37, 38, 39, 47, 48, 631, 8862, 124851, 4972506, ..., ; %e A305579 ..., etc. %t A305579 (* first do *) Needs["Combinatorica`"] (* then *) lst = {k}; g[k_] := Block[{j = 1, l = 2^Length@lst}, While[j < l && !PrimeQ[Plus @@ NthSubset[j, lst] + k], j++ ]; If[j == l, False, True]]; f[n_] := Block[{k = lst[[-1]] + 1}, While[PrimeQ@k || g[k] == True, k++; k++ ]; AppendTo[lst, k]; k]; Do[ Print@ f@ n, {n, 10}] (* _Robert G. Wilson v_, Jun 05 2018 *) %Y A305579 Cf. A005843, A052349, A133660, A133661, first column: A000027. %K A305579 nonn,tabl %O A305579 1,2 %A A305579 _Randy L. Ekl_ and _Robert G. Wilson v_, Jun 05 2018