This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A305608 #17 Jun 06 2018 10:58:28 %S A305608 0,1,1,6,11,62,138,748,1843,9718,25534,131860,362430,1840940,5233460, %T A305608 26225496,76546627,379247782,1130801782,5548263172,16838371978, %U A305608 81921368964,252369171404,1218709491944,3802973638254,18243641612476,57570352319788 %N A305608 Expansion of 1/2 * (((1 + 4*x)/(1 - 4*x))^(1/4) - 1). %C A305608 Let 1/2 * (((1 + k*x)/(1 - k*x))^(m/k) - 1) = a(0) + a(1)*x + a(2)*x^2 + ... %C A305608 Then n*a(n) = 2*m*a(n-1) + k^2*(n-2)*a(n-2) for n > 1. %H A305608 Seiichi Manyama, <a href="/A305608/b305608.txt">Table of n, a(n) for n = 0..1000</a> %F A305608 n*a(n) = 2*a(n-1) + 16*(n-2)*a(n-2) for n > 1. %F A305608 a(n) = A303537(n)/2 for n > 0. %p A305608 seq(coeff(series((1/2)*(((1+4*x)/(1-4*x))^(1/4)-1), x,35),x,n),n=0..30); # _Muniru A Asiru_, Jun 06 2018 %Y A305608 1/2 * (((1 + k*x)/(1 - k*x))^(1/k) - 1): A001405(n-1) (k=2), this sequence (k=4), A305609 (k=8). %Y A305608 Cf. A303537. %K A305608 nonn %O A305608 0,4 %A A305608 _Seiichi Manyama_, Jun 06 2018