This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A305621 #16 Sep 13 2019 15:18:37 %S A305621 1,1,1,1,4,3,1,8,18,12,1,18,78,120,60,1,34,273,780,900,360,1,70,921, %T A305621 4212,8400,7560,2520,1,134,2916,20424,63000,95760,70560,20160,1,270, %U A305621 9150,93360,417120,952560,1164240,725760,181440,1,526,28065,409380,2551560,8217720,14817600,15120000,8164800,1814400,1,1054,85773,1749780,14804700,64615680,161247240,239500800,209563200,99792000,19958400 %N A305621 Triangle read by rows: T(n,k) is the number of rows of n colors with exactly k different colors counting chiral pairs as equivalent, i.e., the rows are reversible. %H A305621 Andrew Howroyd, <a href="/A305621/b305621.txt">Table of n, a(n) for n = 1..1275</a> %F A305621 T(n,k) = (k!/2) * (S2(n,k) + S2(ceiling(n/2),k)) where S2(n,k) is the Stirling subset number A008277. %F A305621 T(n,k) = (A019538(n,k) + A019538(ceiling(n/2),k)) / 2. %F A305621 G.f. for column k: k! x^k / (2*Product_{i=1..k}(1-ix)) + k! (x^(2k-1)+x^(2k)) / (2*Product{i=1..k}(1-i x^2)). - _Robert A. Russell_, Sep 25 2018 %F A305621 T(n, k) = Sum_{i=0..k} (-1)^(k-i)*binomial(k,i)*A277504(n, i). - _Andrew Howroyd_, Sep 13 2019 %e A305621 The triangle begins: %e A305621 1; %e A305621 1, 1; %e A305621 1, 4, 3; %e A305621 1, 8, 18, 12; %e A305621 1, 18, 78, 120, 60; %e A305621 1, 34, 273, 780, 900, 360; %e A305621 1, 70, 921, 4212, 8400, 7560, 2520; %e A305621 1, 134, 2916, 20424, 63000, 95760, 70560, 20160; %e A305621 1, 270, 9150, 93360, 417120, 952560, 1164240, 725760, 181440; %e A305621 ... %e A305621 For T(3,2)=4, the achiral color rows are ABA and BAB, while the chiral pairs are AAB-BAA and ABB-BBA. For T(3,3)=3, the color rows are all chiral pairs: ABC-CBA, ACB-BCA, and BAC-CAB. %t A305621 Table[(k!/2) (StirlingS2[n, k] + StirlingS2[Ceiling[n/2], k]), {n, 1, 15}, {k, 1, n}] // Flatten %o A305621 (PARI) T(n,k) = {k! * (stirling(n,k,2) + stirling((n+1)\2,k,2)) / 2} \\ _Andrew Howroyd_, Sep 13 2019 %Y A305621 Columns 1-6 are A057427, A056309, A056310, A056311, A056312, and A056313. %Y A305621 Row sums are A326963. %Y A305621 A019538 counts chiral pairs as two, i.e., the rows are not reversible. %Y A305621 Cf. A277504, A305622. %K A305621 nonn,tabl,easy %O A305621 1,5 %A A305621 _Robert A. Russell_, Jun 06 2018