This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A305623 #31 Sep 27 2018 03:13:18 %S A305623 0,0,3,18,72,267,885,2880,9000,27915,85233,259308,783972,2366007, %T A305623 7122405,21422160,64364400,193307955,580316313,1741791348,5226945372, %U A305623 15684152847,47058746925,141189342840,423593188200,1270831465995,3812595048993,11437991207388,34314376250772,102943948309287,308833455491445,926503630549920,2779517334002400,8338565015656035,25015720816575273,75047214375967428 %N A305623 Number of chiral pairs of rows of n colors with exactly 3 different colors. %C A305623 If the row is achiral, i.e., the same as its reverse, we ignore it. If different from its reverse, we count it and its reverse as a chiral pair. %H A305623 Simon Plouffe, <a href="http://vixra.org/abs/1409.0048">Conjectures of the OEIS, as of June 20, 2018.</a> %F A305623 a(n) = (k!/2) * (S2(n,k) - S2(ceiling(n/2),k)), with k=3 colors used and where S2(n,k) is the Stirling subset number A008277. %F A305623 a(n) = (A001117(n) - A056454(n)) / 2. %F A305623 a(n) = A001117(n) - A056310(n) = A056310(n) - A056454(n). %F A305623 G.f.: -(k!/2) * (x^(2k-1) + x^(2k)) / Product_{j=1..k} (1 - j*x^2) + (k!/2) * x^k / Product_{j=1..k} (1 - j*x) with k=3 colors used. %F A305623 G.f.: 3*x^3*(5*x^2-x-1)/(-36*x^6+30*x^5+24*x^4-25*x^3-x^2+5*x-1). - _Simon Plouffe_, Jun 20 2018 %e A305623 For a(3) = 3, the chiral pairs are ABC-CBA, ACB-BCA, and BAC-CAB. %t A305623 k=3; Table[(k!/2) (StirlingS2[n,k] - StirlingS2[Ceiling[n/2],k]), {n, 1, 40}] %o A305623 (PARI) a(n) = 3*(stirling(n,3,2)-stirling(ceil(n/2),3,2)); \\ _Altug Alkan_, Sep 26 2018 %Y A305623 Third column of A305622. %Y A305623 A056454(n) is number of achiral rows of n colors with exactly 3 different colors. %Y A305623 Cf. A001117, A056310. %K A305623 nonn,easy %O A305623 1,3 %A A305623 _Robert A. Russell_, Jun 06 2018