cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305654 a(n) = [x^n] exp(Sum_{k>=1} x^k*(1 + x^k)/(k*(1 - x^k)^n)).

This page as a plain text file.
%I A305654 #5 Jun 07 2018 16:31:08
%S A305654 1,1,4,14,65,323,1890,12002,83901,630818,5081318,43546333,395422430,
%T A305654 3788368227,38151667046,402516707510,4436230390977,50948789415297,
%U A305654 608433141666219,7540823673023319,96826154085714992,1285991546051286085,17640769457638701839,249602608552024560609
%N A305654 a(n) = [x^n] exp(Sum_{k>=1} x^k*(1 + x^k)/(k*(1 - x^k)^n)).
%H A305654 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%F A305654 a(n) = [x^n] Product_{k>=1} 1/(1 - x^k)^(2*binomial(n+k-2,n-1)-binomial(n+k-3,n-2)).
%t A305654 Table[SeriesCoefficient[Exp[Sum[x^k (1 + x^k)/(k (1 - x^k)^n), {k, 1, n}]], {x, 0, n}], {n, 0, 23}]
%t A305654 Table[SeriesCoefficient[Product[1/(1 - x^k)^(2 Binomial[n + k - 2, n - 1] - Binomial[n + k - 3, n - 2]), {k, 1, n}], {x, 0, n}], {n, 0, 23}]
%Y A305654 Cf. A000990, A023871, A253289, A279215, A293554, A305206, A305653, A305655.
%K A305654 nonn
%O A305654 0,3
%A A305654 _Ilya Gutkovskiy_, Jun 07 2018