cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305655 a(n) = [x^n] exp(Sum_{k>=1} (-1)^(k+1)*x^k*(1 + x^k)/(k*(1 - x^k)^n)).

This page as a plain text file.
%I A305655 #4 Jun 07 2018 16:20:27
%S A305655 1,1,3,13,54,290,1674,10857,76398,580230,4706734,40598349,370694845,
%T A305655 3569027696,36100349833,382360758863,4228730647420,48716663849192,
%U A305655 583403253712747,7248883337962522,93291181556742684,1241632098163126324,17064777292709034968,241874821482784132204
%N A305655 a(n) = [x^n] exp(Sum_{k>=1} (-1)^(k+1)*x^k*(1 + x^k)/(k*(1 - x^k)^n)).
%H A305655 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%F A305655 a(n) = [x^n] Product_{k>=1} (1 + x^k)^(2*binomial(n+k-2,n-1)-binomial(n+k-3,n-2)).
%t A305655 Table[SeriesCoefficient[Exp[Sum[(-1)^(k + 1) x^k (1 + x^k)/(k (1 - x^k)^n), {k, 1, n}]], {x, 0, n}], {n, 0, 23}]
%t A305655 Table[SeriesCoefficient[Product[(1 + x^k)^(2 Binomial[n + k - 2, n - 1] - Binomial[n + k - 3, n - 2]), {k, 1, n}], {x, 0, n}], {n, 0, 23}]
%Y A305655 Cf. A027998, A255835, A281156, A293554, A305206, A305654.
%K A305655 nonn
%O A305655 0,3
%A A305655 _Ilya Gutkovskiy_, Jun 07 2018