cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305671 Most common value of sigma (A000203) among all composites (A073255) up to composite(n) = A002808(n) inclusive, or 0 if there is a tie.

This page as a plain text file.
%I A305671 #22 Aug 04 2018 14:44:22
%S A305671 7,0,0,0,0,0,0,24,24,24,24,24,24,24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
%T A305671 0,0,0,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,72,0,
%U A305671 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
%N A305671 Most common value of sigma (A000203) among all composites (A073255) up to composite(n) = A002808(n) inclusive, or 0 if there is a tie.
%e A305671 In the following table, column A lists the n-th composite and column B lists sigma(A(n)).
%e A305671    n |  A |   B | a(n)
%e A305671   ---------------------
%e A305671    1 |  4 |   7 |  7
%e A305671    2 |  6 |  12 |  0
%e A305671    3 |  8 |  15 |  0
%e A305671    4 |  9 |  13 |  0
%e A305671    5 | 10 |  18 |  0
%e A305671    6 | 12 |  28 |  0
%e A305671    7 | 14 |  24 |  0
%e A305671    8 | 15 |  24 | 24 <--- first time a value of sigma occurs twice
%e A305671    9 | 16 |  31 | 24
%e A305671   10 | 18 |  39 | 24
%e A305671   11 | 20 |  42 | 24
%e A305671   12 | 21 |  32 | 24
%e A305671   13 | 22 |  36 | 24
%e A305671   14 | 24 |  60 | 24
%e A305671   15 | 25 |  31 |  0 <--- second time a value of sigma occurs twice
%e A305671   16 | 26 |  42 |  0
%e A305671   17 | 27 |  40 |  0
%e A305671   18 | 28 |  56 |  0
%e A305671   19 | 30 |  72 |  0
%e A305671   20 | 32 |  63 |  0
%e A305671   21 | 33 |  48 |  0
%e A305671   22 | 34 |  54 |  0
%e A305671   23 | 35 |  48 |  0
%e A305671   24 | 36 |  91 |  0
%e A305671   25 | 38 |  60 |  0
%e A305671   26 | 39 |  56 |  0
%e A305671   27 | 40 |  90 |  0
%e A305671   28 | 42 |  96 |  0
%e A305671   29 | 44 |  84 |  0
%e A305671   30 | 45 |  78 |  0
%e A305671   31 | 46 |  72 |  0
%e A305671   32 | 48 | 124 |  0
%e A305671   33 | 49 |  57 |  0
%e A305671   34 | 50 |  93 |  0
%e A305671   35 | 51 |  72 | 72 <--- first time a value of sigma occurs three times
%e A305671   36 | 52 |  98 | 72
%e A305671   37 | 54 | 120 | 72
%e A305671   38 | 55 |  72 | 72 <--- fourth occurrence of the value 72
%e A305671   39 | 56 | 120 | 72
%e A305671   40 | 57 |  80 | 72
%e A305671   41 | 58 |  90 | 72
%e A305671   42 | 60 | 168 | 72
%e A305671   43 | 62 |  96 | 72
%e A305671   44 | 63 | 104 | 72
%e A305671   45 | 64 | 127 | 72
%e A305671   46 | 65 |  84 | 72
%e A305671   47 | 66 | 144 | 72
%e A305671   48 | 68 | 126 | 72
%e A305671   49 | 69 |  96 | 72
%e A305671   50 | 70 | 144 | 72
%e A305671   51 | 72 | 195 | 72
%e A305671   52 | 74 | 114 | 72
%e A305671   53 | 75 | 124 | 72
%e A305671   54 | 76 | 140 | 72
%e A305671   55 | 77 |  96 |  0 <--- another value apart from 72 occurs four times
%e A305671   56 | 78 | 168 |  0
%p A305671 N:= 100: # to get a(1)..a(N)
%p A305671 cmax:= 3*N: Counts:= Vector(cmax):
%p A305671 i:= 0:
%p A305671 for n from 4 do
%p A305671   if isprime(n) then next fi;
%p A305671   i:= i+1;
%p A305671   if i > N then break fi;
%p A305671   s:= numtheory:-sigma(n);
%p A305671   if s > cmax then cmax:= s; Counts(s):= 1;
%p A305671   else Counts[s]:= Counts[s]+1;
%p A305671   fi;
%p A305671   vmax:= max[index](Counts):
%p A305671   if max(Counts[1..vmax-1]) = Counts[vmax] or max(Counts[vmax+1..-1])=Counts[vmax] then A[i]:= 0 else A[i]:= vmax fi
%p A305671 od:
%p A305671 seq(A[i],i=1..N); # _Robert Israel_, Jun 12 2018
%t A305671 Block[{c = Select[Range@ 120, CompositeQ], s}, s = DivisorSigma[1, c]; Array[If[Length@ # == 1, #[[1, 1]], 0] &@ Last@ SplitBy[SortBy[Tally@ Take[s, #], Last], Last] &, Length@ s]] (* _Michael De Vlieger_, Jun 14 2018 *)
%o A305671 (PARI) add_sigma(vec, val) = if(val > #vec, vec=concat(vec, vector(val-#vec))); vec[val]++; vec
%o A305671 max_pos(vec) = if(#setintersect(vecsort(vec), vector(#vec, t, vecmax(vec))) > 1, return(0), for(k=1, #vec, if(vec[k]==vecmax(vec), return(k))))
%o A305671 terms(n) = my(sig=[], i=0); forcomposite(c=1, , sig=add_sigma(sig, sigma(c)); print1(max_pos(sig), ", "); i++; if(i==n, break))
%o A305671 terms(100) \\ Print initial 100 terms of the sequence
%Y A305671 Cf. A000203, A002808, A073255, A305672, A305673, A305674, A305675, A305676.
%K A305671 nonn,look
%O A305671 1,1
%A A305671 _Felix Fröhlich_, Jun 08 2018