cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305715 Irregular triangle whose rows are all finite sequences of positive integers that are polydivisible and strictly pandigital.

This page as a plain text file.
%I A305715 #8 Jun 09 2018 08:43:01
%S A305715 1,1,2,1,2,3,3,2,1,1,2,3,6,5,4,3,2,1,6,5,4,3,8,1,6,5,4,7,2,3,8,1,6,5,
%T A305715 4,7,2,9,3,8,1,6,5,4,7,2,9,10
%N A305715 Irregular triangle whose rows are all finite sequences of positive integers that are polydivisible and strictly pandigital.
%C A305715 A positive integer sequence q of length k is strictly pandigital if it is a permutation of {1,2,...,k}. It is polydivisible if Sum_{i = 1...m} 10^(m - i) * q_i is a multiple of m for all 1 <= m <= k.
%D A305715 Matt Parker, Things to make and do in the fourth dimension, 2015, pages 7-9.
%H A305715 Wikipedia, <a href="https://en.wikipedia.org/wiki/Polydivisible_number">Polydivisible number</a>
%e A305715 Triangle is:
%e A305715   {1}
%e A305715   {1,2}
%e A305715   {1,2,3}
%e A305715   {3,2,1}
%e A305715   {1,2,3,6,5,4}
%e A305715   {3,2,1,6,5,4}
%e A305715   {3,8,1,6,5,4,7,2}
%e A305715   {3,8,1,6,5,4,7,2,9}
%e A305715   {3,8,1,6,5,4,7,2,9,10}
%t A305715 polyQ[q_]:=And@@Table[Divisible[FromDigits[Take[q,k]],k],{k,Length[q]}];
%t A305715 Flatten[Table[Select[Permutations[Range[n]],polyQ],{n,8}]]
%Y A305715 Cf. A000670, A010784, A030299, A050289, A143671, A144688, A156069, A156071, A158242, A163574, A240763, A305701, A305712, A305714 (row lengths).
%K A305715 base,fini,tabf,full,nonn
%O A305715 1,3
%A A305715 _Gus Wiseman_, Jun 08 2018