A305720 Square array T(n, k) read by antidiagonals, n > 0 and k > 0; for any prime number p, the p-adic valuation of T(n, k) is the product of the p-adic valuations of n and of k.
1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 4, 3, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 16, 1, 2, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 8, 1, 4, 5, 4, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 9, 64, 1, 6, 1, 64, 9, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 4, 1, 8, 7, 8
Offset: 1
Examples
Array T(n, k) begins: n\k| 1 2 3 4 5 6 7 8 9 10 ---+-------------------------------------------------- 1| 1 1 1 1 1 1 1 1 1 1 2| 1 2 1 4 1 2 1 8 1 2 -> A006519 3| 1 1 3 1 1 3 1 1 9 1 -> A038500 4| 1 4 1 16 1 4 1 64 1 4 5| 1 1 1 1 5 1 1 1 1 5 -> A060904 6| 1 2 3 4 1 6 1 8 9 2 -> A065331 7| 1 1 1 1 1 1 7 1 1 1 -> A268354 8| 1 8 1 64 1 8 1 512 1 8 9| 1 1 9 1 1 9 1 1 81 1 10| 1 2 1 4 5 2 1 8 1 10 -> A132741
Crossrefs
Programs
-
Mathematica
T[n_, k_] := With[{p = FactorInteger[GCD[n, k]][[All, 1]]}, If[p == {1}, 1, Times @@ (p^(IntegerExponent[n, p] * IntegerExponent[k, p]))]]; Table[T[n-k+1, k], {n, 1, 15}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 11 2018 *)
-
PARI
T(n, k) = my (p=factor(gcd(n, k))[,1]); prod(i=1, #p, p[i]^(valuation(n, p[i]) * valuation(k, p[i])))
Formula
T(n, k) = T(k, n) (T is commutative).
T(m, T(n, k)) = T(T(m, n), k) (T is associative).
T(n, k) = 1 iff gcd(n, k) = 1.
T(n, n) = A054496(n).
T(n, A007947(n)) = n.
T(n, 1) = 1.
T(n, 2) = A006519(n).
T(n, 3) = A038500(n).
T(n, 4) = A006519(n)^2.
T(n, 5) = A060904(n).
T(n, 6) = A065331(n).
T(n, 7) = A268354(n).
T(n, 8) = A006519(n)^3.
T(n, 9) = A038500(n)^2.
T(n, 10) = A132741(n).
T(n, 11) = A268357(n).
Comments