This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A305737 #34 Apr 18 2025 11:29:19 %S A305737 1,2,8,184,62464,4293001088,18446743803209556992, %T A305737 340282366920938461120638132973980614656, %U A305737 115792089237316195423570985008687907766497981100801256254562260326801824546816 %N A305737 Number of subsets S of vectors in GF(2)^n such that span(S) = GF(2)^n. %C A305737 Asymptotic to A001146(n) = 2^(2^n). %D A305737 R. P. Stanley, Enumerative Combinatorics Vol 1, Cambridge, 1997, page 127. %H A305737 Andrew Howroyd, <a href="/A305737/b305737.txt">Table of n, a(n) for n = 0..10</a> %H A305737 Tilman Piesk, <a href="https://en.wikiversity.org/wiki/Sequence_A305737">relationship to Boolean functions</a> (Wikiversity) %F A305737 a(n) = Sum_{k=0..n} A022166(n,k)*(-1)^(n-k)*2^binomial(n-k,2)*(2^(2^k)-1). %F A305737 Sum_{k=0..n} a(k)* A022166(n,k) = 2^(2^n) - 1. - _Geoffrey Critzer_, Apr 25 2024 %F A305737 a(n) = Sum_{k=0..n} A158474(n,k) * A051179(n-k). - _Tilman Piesk_, Mar 12 2025 %t A305737 Table[Sum[QBinomial[n, k, q] (-1)^(n - k) q^Binomial[n - k, 2] (2^(q^k) - 1) /. q -> 2, {k, 0, n}], {n, 0, 8}] %o A305737 (PARI) \\ here U(n,k) is A022166(n,k). %o A305737 U(n,k)={polcoeff(x^k/prod(j=0, k, 1-2^j*x+x*O(x^n)), n)} %o A305737 a(n)={sum(k=0, n, U(n,k)*(-1)^(n-k)*2^binomial(n-k,2)*(2^(2^k)-1))} \\ _Andrew Howroyd_, Mar 01 2020 %Y A305737 Cf. A001146, A022166, A158474, A051179. %K A305737 nonn %O A305737 0,2 %A A305737 _Geoffrey Critzer_, Jun 22 2018 %E A305737 a(8) corrected by _Andrew Howroyd_, Mar 01 2020