cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305741 Decimal expansion of imaginary part of 6th nontrivial zero of Riemann zeta function.

This page as a plain text file.
%I A305741 #16 Nov 23 2018 09:25:36
%S A305741 3,7,5,8,6,1,7,8,1,5,8,8,2,5,6,7,1,2,5,7,2,1,7,7,6,3,4,8,0,7,0,5,3,3,
%T A305741 2,8,2,1,4,0,5,5,9,7,3,5,0,8,3,0,7,9,3,2,1,8,3,3,3,0,0,1,1,1,3,6,2,2,
%U A305741 1,4,9,0,8,9,6,1,8,5,3,7,2,6,4,7,3,0,3,2,9,1,0
%N A305741 Decimal expansion of imaginary part of 6th nontrivial zero of Riemann zeta function.
%H A305741 Andrew M. Odlyzko, <a href="http://www.dtc.umn.edu/~odlyzko/zeta_tables/index.html">Tables of zeros of the Riemann zeta function</a>
%e A305741 The zero is at 1/2 + i * 37.58617815882567125721776348070533282140559735083...
%t A305741 RealDigits[Im[ZetaZero[6]], 10, 120][[1]] (* _Vaclav Kotesovec_, Jun 23 2018 *)
%o A305741 (PARI) lfunzeros(1,[37,38])[1] \\ _M. F. Hasler_, Nov 23 2018
%Y A305741 Imaginary part of k-th nontrivial zero of Riemann zeta function: A058303 (k=1), A065434 (k=2), A065452 (k=3), A065453 (k=4), A192492 (k=5), this sequence (k=6), A305742 (k=7), A305743 (k=8), A305744 (k=9), A306004 (k=10).
%Y A305741 Cf. A002410 (rounded values: main entry), A013629 (floor), A092783 (ceiling).
%K A305741 nonn,cons
%O A305741 2,1
%A A305741 _Seiichi Manyama_, Jun 23 2018