This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A305741 #16 Nov 23 2018 09:25:36 %S A305741 3,7,5,8,6,1,7,8,1,5,8,8,2,5,6,7,1,2,5,7,2,1,7,7,6,3,4,8,0,7,0,5,3,3, %T A305741 2,8,2,1,4,0,5,5,9,7,3,5,0,8,3,0,7,9,3,2,1,8,3,3,3,0,0,1,1,1,3,6,2,2, %U A305741 1,4,9,0,8,9,6,1,8,5,3,7,2,6,4,7,3,0,3,2,9,1,0 %N A305741 Decimal expansion of imaginary part of 6th nontrivial zero of Riemann zeta function. %H A305741 Andrew M. Odlyzko, <a href="http://www.dtc.umn.edu/~odlyzko/zeta_tables/index.html">Tables of zeros of the Riemann zeta function</a> %e A305741 The zero is at 1/2 + i * 37.58617815882567125721776348070533282140559735083... %t A305741 RealDigits[Im[ZetaZero[6]], 10, 120][[1]] (* _Vaclav Kotesovec_, Jun 23 2018 *) %o A305741 (PARI) lfunzeros(1,[37,38])[1] \\ _M. F. Hasler_, Nov 23 2018 %Y A305741 Imaginary part of k-th nontrivial zero of Riemann zeta function: A058303 (k=1), A065434 (k=2), A065452 (k=3), A065453 (k=4), A192492 (k=5), this sequence (k=6), A305742 (k=7), A305743 (k=8), A305744 (k=9), A306004 (k=10). %Y A305741 Cf. A002410 (rounded values: main entry), A013629 (floor), A092783 (ceiling). %K A305741 nonn,cons %O A305741 2,1 %A A305741 _Seiichi Manyama_, Jun 23 2018