This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A305743 #18 Nov 23 2018 10:09:46 %S A305743 4,3,3,2,7,0,7,3,2,8,0,9,1,4,9,9,9,5,1,9,4,9,6,1,2,2,1,6,5,4,0,6,8,0, %T A305743 5,7,8,2,6,4,5,6,6,8,3,7,1,8,3,6,8,7,1,4,4,6,8,7,8,8,9,3,6,8,5,5,2,1, %U A305743 0,8,8,3,2,2,3,0,5,0,5,3,6,2,6,4,5,6,3,4,9,3,7,1 %N A305743 Decimal expansion of imaginary part of 8th nontrivial zero of Riemann zeta function. %H A305743 Andrew M. Odlyzko, <a href="http://www.dtc.umn.edu/~odlyzko/zeta_tables/index.html">Tables of zeros of the Riemann zeta function</a> %H A305743 <a href="/index/Z#zeta_function">OEIS index entries for sequences related to the zeta function</a>. %e A305743 The zero is at 1/2 + I*43.3270732809149995194961221654068... - _M. F. Hasler_, Nov 21 2018 %t A305743 RealDigits[Im[ZetaZero[8]], 10, 120][[1]] (* _Vaclav Kotesovec_, Jun 23 2018 *) %o A305743 (PARI) solve(X=43,44,imag(zeta(0.5+X*I))) \\ _M. F. Hasler_, Nov 21 2018 %o A305743 (PARI) lfunzeros(1,[43,44])[1] \\ _M. F. Hasler_, Nov 23 2018 %Y A305743 Imaginary part of k-th nontrivial zero of Riemann zeta function: A058303 (k=1), A065434 (k=2), A065452 (k=3), A065453 (k=4), A192492 (k=5), A305741 (k=6), A305742 (k=7), this sequence (k=8), A305744 (k=9), A306004 (k=10). %Y A305743 Cf. A002410 (rounded values: main entry), A013629 (floor), A092783 (ceiling). %K A305743 nonn,cons %O A305743 2,1 %A A305743 _Seiichi Manyama_, Jun 23 2018