cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305743 Decimal expansion of imaginary part of 8th nontrivial zero of Riemann zeta function.

This page as a plain text file.
%I A305743 #18 Nov 23 2018 10:09:46
%S A305743 4,3,3,2,7,0,7,3,2,8,0,9,1,4,9,9,9,5,1,9,4,9,6,1,2,2,1,6,5,4,0,6,8,0,
%T A305743 5,7,8,2,6,4,5,6,6,8,3,7,1,8,3,6,8,7,1,4,4,6,8,7,8,8,9,3,6,8,5,5,2,1,
%U A305743 0,8,8,3,2,2,3,0,5,0,5,3,6,2,6,4,5,6,3,4,9,3,7,1
%N A305743 Decimal expansion of imaginary part of 8th nontrivial zero of Riemann zeta function.
%H A305743 Andrew M. Odlyzko, <a href="http://www.dtc.umn.edu/~odlyzko/zeta_tables/index.html">Tables of zeros of the Riemann zeta function</a>
%H A305743 <a href="/index/Z#zeta_function">OEIS index entries for sequences related to the zeta function</a>.
%e A305743 The zero is at 1/2 + I*43.3270732809149995194961221654068... - _M. F. Hasler_, Nov 21 2018
%t A305743 RealDigits[Im[ZetaZero[8]], 10, 120][[1]] (* _Vaclav Kotesovec_, Jun 23 2018 *)
%o A305743 (PARI) solve(X=43,44,imag(zeta(0.5+X*I))) \\ _M. F. Hasler_, Nov 21 2018
%o A305743 (PARI) lfunzeros(1,[43,44])[1] \\ _M. F. Hasler_, Nov 23 2018
%Y A305743 Imaginary part of k-th nontrivial zero of Riemann zeta function: A058303 (k=1), A065434 (k=2), A065452 (k=3), A065453 (k=4), A192492 (k=5), A305741 (k=6), A305742 (k=7), this sequence (k=8), A305744 (k=9), A306004 (k=10).
%Y A305743 Cf. A002410 (rounded values: main entry), A013629 (floor), A092783 (ceiling).
%K A305743 nonn,cons
%O A305743 2,1
%A A305743 _Seiichi Manyama_, Jun 23 2018