cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305745 Expansion of Product_{k>=1} ((1 - k*x^k) / (1 + k*x^k))^k.

This page as a plain text file.
%I A305745 #14 Mar 01 2024 19:16:33
%S A305745 1,-2,-6,-4,22,72,84,-32,-474,-1310,-1728,60,6420,18712,31080,24992,
%T A305745 -34074,-186468,-430138,-650612,-496296,687120,3599652,8413968,
%U A305745 13374148,12772246,-3910080,-50592280,-136089520,-244815336,-309079848,-176916784,391358838
%N A305745 Expansion of Product_{k>=1} ((1 - k*x^k) / (1 + k*x^k))^k.
%H A305745 Robert Israel, <a href="/A305745/b305745.txt">Table of n, a(n) for n = 0..6234</a>
%F A305745 Convolution of A266964 and A266971.
%F A305745 Convolution inverse of A266942.
%p A305745 N:= 50: # for a(0) .. a(N)
%p A305745 f:= mul(((1-k*x^k)/(1+k*x^k))^k,k=1..N):
%p A305745 S:= series(f,x,N+1):
%p A305745 seq(coeff(S,x,i),i=0..N); # _Robert Israel_, Mar 01 2024
%o A305745 (PARI) N=99; x='x+O('x^N); Vec(prod(k=1, N, ((1-k*x^k)/(1+k*x^k))^k))
%Y A305745 Cf. A266942, A266964, A266971, A292317.
%K A305745 sign
%O A305745 0,2
%A A305745 _Seiichi Manyama_, Jun 09 2018