cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305757 Inverse Euler transform of q*(j-720) where j is j-function (A000521).

This page as a plain text file.
%I A305757 #24 Jun 11 2018 08:03:37
%S A305757 24,196584,16773144,-18919981056,-3292295086056,2312547886368744,
%T A305757 640457437563740184,-302667453389051314176,-123005476312830648176616,
%U A305757 39529719620247267255853032,23306082528463942764630528024,-4849033309391159571741461446656
%N A305757 Inverse Euler transform of q*(j-720) where j is j-function (A000521).
%C A305757 (Conjecture) Let {b_n} = inverse Euler transform of (q*(j+144*k)). b_n is a multiple of 24.
%H A305757 Seiichi Manyama, <a href="/A305757/b305757.txt">Table of n, a(n) for n = 1..377</a>
%H A305757 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%F A305757 q*(j-720) = Product_{k>0} (1 - x^k)^(-a(k)).
%e A305757 (1-x)^(-24) * (1-x^2)^(-196584) * (1-x^3)^(-16773144) * (1-x^4)^18919981056 * ... = 1 + 24*x + 196884*x^2 + 21493760*x^3 + 864299970*x^4 + ... .
%Y A305757 Inverse Euler transform of q*(j+144*k): (-1)*A192731 (k=0), this sequence (k=-5), (-1)*A289061 (k=-12).
%Y A305757 Cf. A000521, A007240 (j-720), A302407, A305756.
%K A305757 sign
%O A305757 1,1
%A A305757 _Seiichi Manyama_, Jun 10 2018