This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A305761 #5 Jul 15 2018 13:24:05 %S A305761 91,203,247,299,301,377,427,551,553,559,611,689,703,707,791,817,851, %T A305761 923,949,973,1027,1073,1081,1141,1159,1247,1267,1313,1339,1349,1363, %U A305761 1391,1393,1501,1537,1591,1603,1679,1703,1739,1757,1769,1781,1807,1897,1919,1961 %N A305761 Nonprime Heinz numbers of z-trees. %C A305761 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). Given a finite set S of positive integers greater than one, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices with a common divisor. For example, G({6,14,15,35}) is a 4-cycle. A multiset S is said to be connected if G(S) is a connected graph. The z-density of a multiset S of positive integers is Sum_{s in S} (omega(s) - 1) - omega(lcm(S)). Finally, a z-tree of weight n is a connected strict integer partition of n with at least two pairwise indivisible parts and z-density -1. %e A305761 2639 is the Heinz number of {4,6,10}, a z-tree corresponding to the multiset system {{1,1},{1,2},{1,3}}. %t A305761 primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A305761 zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]]; %t A305761 zensity[s_]:=Total[(PrimeNu[#]-1&)/@s]-PrimeNu[LCM@@s]; %t A305761 Select[Range[3000],With[{p=primeMS[#]},And[UnsameQ@@p,Length[p]>1,zensity[p]==-1,Length[zsm[p]]==1,Select[Tuples[p,2],UnsameQ@@#&&Divisible@@#&]=={}]]&] %Y A305761 Cf. A030019, A056239, A112798, A286520, A302242, A303362, A303837, A304118, A304714, A304716, A305052, A305078, A305079, A305081. %K A305761 nonn %O A305761 1,1 %A A305761 _Gus Wiseman_, Jun 10 2018